Volume 38 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
LIU Chao, LI Xi, HAO Lifen, et al. Research progress of functional modification of MXene and its applications[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1020-1028. doi: 10.13801/j.cnki.fhclxb.20201218.003
Citation: LIU Chao, LI Xi, HAO Lifen, et al. Research progress of functional modification of MXene and its applications[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1020-1028. doi: 10.13801/j.cnki.fhclxb.20201218.003

Research progress of functional modification of MXene and its applications

doi: 10.13801/j.cnki.fhclxb.20201218.003
  • Received Date: 2020-10-14
  • Accepted Date: 2020-12-14
  • Available Online: 2020-12-18
  • Publish Date: 2021-04-08
  • MXene is a novel kind of two-dimensional material with similar structure with graphene, which is composed of transition metal carbide, nitride or carbonitrides. Usually, it has excellent physical and chemical properties, such as large specific surface area, good electrical conductivity, excellent catalysis, excellent self-lubricating property, and abundant surface functional groups, thus showing broad application prospects in varied fields. In this paper, in view of easy stacking of MXene nanosheets and the poor compatibility with polymer matrix, the research progress of MXene surface functional modification was reviewed, including organic, inorganic and organic-inorga-nic hybrid modification methods. It also summarized the applications research progress of MXene in the fields of energy storage, catalysis and tribology, as well as prospected the future research direction.

     

  • loading
  • [1]
    NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. doi: 10.1002/adma.201102306
    [2]
    NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: A new family of two-dimensional materials[J]. Advanced Materials,2014,26(7):992-1005.
    [3]
    ZHANG W, MA J, ZHANG W J. A multidimensional nanostructural design towards electrochemically stable and mechanically strong hydrogel electrodes[J]. Nanoscale,2020,12(12):6637-6643. doi: 10.1039/D0NR01414A
    [4]
    QI Q, ZHANG H, ZHANG P, et al. Self-assembled sandwich hollow porous carbon sphere@MXene composites as superior Li-S battery cathode hosts[J]. 2D Materials,2020,7(2):25-49.
    [5]
    RAN J, GAO G, LI F T, et al. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production[J]. Nature Communications,2017,8:13907. doi: 10.1038/ncomms13907
    [6]
    YAN H, ZHANG L, LI H, et al. Towards high-performance additive of Ti3C2/graphene hybrid with a novel wrapping structure in epoxy coating[J]. Carbon,2019,157(2):217-233.
    [7]
    YANG J, CHEN B, SONG H, et al. Synthesis, characterization, and tribological properties of two-dimensional Ti3C2[J]. Crystal Research and Technology,2015,46(2):926-932.
    [8]
    JI J, ZHAO L, SHEN Y, et al. Covalent stabilization and functionalization of MXene via silylation reactions with improved surface properties[J]. FlatChem,2019,17:100128. doi: 10.1016/j.flatc.2019.100128
    [9]
    RIAZI H, ANAYEE M, HANTANASIRISAKUL K, et al. Surface modification of a MXene by an aminosilane coupling agent[J]. Advanced Materials Interfaces,2020,7(6):1902008. doi: 10.1002/admi.201902008
    [10]
    HAO L, ZHANG H, WU X, et al. Novel thin-film nanocomposite membranes filled with multi-functional Ti3C2Tx nanosheets for task-specific solvent transport[J]. Compo-sites Part A: Applied Science and Manufacturing,2017,100:139-149.
    [11]
    ZHANG H, WANG L, CHEN Q, et al. Preparation, mechanical and anti-friction performance of MXene/polymer composites[J]. Materials & Design,2016,92(11):682-689.
    [12]
    顾鹏程, 宋爽, 张塞, 等. 聚苯胺改性Mxene复合材料对U(VI)的高效富集及机理研究[J]. 化学学报, 2018, 76:701-708. doi: 10.6023/A18060245

    GU Pengcheng, SONG Shuang, ZHANG Sai, et al. Enrichment of U(VI) on polyaniline modified mxene composites studied by batch experiment and mechanism investigation[J]. Acta Chimica Sinica,2018,76:701-708(in Chinese). doi: 10.6023/A18060245
    [13]
    CHEN J, CHEN K, TONG D, et al. CO2 and temperature dual responsive “Smart” MXene phases[J]. Chemical Communications,2015,51(2):314-317. doi: 10.1039/C4CC07220K
    [14]
    WANG Q, ZHANG H, LIU J, et al. Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances[J]. Advanced Functional Materials,2019,29(7):1806819. doi: 10.1002/adfm.201806819
    [15]
    YU B, TAWIAH B, WANG L, et al. Interface decoration of exfoliated MXene ultra-thin nanosheets for fire and smoke suppressions of thermoplastic polyurethane elastomer[J]. Journal of Hazardous Materials,2019,374:110-119. doi: 10.1016/j.jhazmat.2019.04.026
    [16]
    LIU J, ZHANG H, SUN R, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding[J]. Advanced Materials,2017,29(38):1702367. doi: 10.1002/adma.201702367
    [17]
    ZHANG X, WANG H, HU R, et al. Novel solvothermal preparation and enhanced microwave absorption properties of Ti3C2Tx MXene modified by in situ coated Fe3O4 nanoparticles[J]. Applied Surface Science,2019,484:383-391. doi: 10.1016/j.apsusc.2019.03.264
    [18]
    LI X, WEN C, YUAN M, et al. Nickel oxide nanoparticles decorated highly conductive Ti3C2 MXene as cathode catalyst for rechargeable O2 battery[J]. Journal of Alloys and Compounds,2020,824:153803. doi: 10.1016/j.jallcom.2020.153803
    [19]
    WU Y, NIE P, JIANG J, et al. MoS2-nanosheet-decorated 2D titanium carbide (MXene) as high-performance anodes for sodium-ion batteries[J]. ChemElectroChem,2017,4(6):1560-1565. doi: 10.1002/celc.201700060
    [20]
    SU W, WANG S, FU L, et al. Growth of WS2 flakes on Ti3C2Tx Mxene using vapor transportation routine[J]. Coatings,2018,8(8):281. doi: 10.3390/coatings8080281
    [21]
    LIAN P C, DONG Y F, WU Z S, et al. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high capacity sodium and potassium ion batteries[J]. Nano Energy,2017,40:1-8. doi: 10.1016/j.nanoen.2017.08.002
    [22]
    FENG W, LUO H, ZENG S, et al. Ni-modified Ti3C2 MXene with enhanced microwave absorbing ability[J]. Materials Chemistry Frontiers,2018,2(12):2320-2326. doi: 10.1039/C8QM00436F
    [23]
    ZHAO F, YAO Y, JIANG C, et al. Self-reduction bimetallic nanoparticles on ultrathin MXene nanosheets as functional platform for pesticide sensing[J]. Journal of Hazardous Materials,2020,384:121358. doi: 10.1016/j.jhazmat.2019.121358
    [24]
    ZHANG Y, WAN Y, PAN G Y, et. al. Surface modification of polyamide reverse osmosis membrane with organic-inorganic hybrid material for antifouling[J]. Applied Surface Science,2017,433(1):139-148.
    [25]
    MEHRA N, MU L W, YANG X T, et. al. Thermal transport in polymeric materials and across composite interfaces[J]. Applied Materials Today,2018,12:92-130. doi: 10.1016/j.apmt.2018.04.004
    [26]
    LUO J, TAO X, ZHANG J, et al. Sn4+ ion decorated highly conductive Ti3C2 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance[J]. ACS Nano,2016,10(2):2491-2499. doi: 10.1021/acsnano.5b07333
    [27]
    TU X, GAO F, XUE M, et al. Mxene/carbon nanoborn/β-cyclodextrin-metal-organic frameworks as high-performance electrochemical sensing platform for sensitive detection of carbendazim pesticide[J]. Journal of Hazardous Materials,2020,396:122776. doi: 10.1016/j.jhazmat.2020.122776
    [28]
    ZHANG Y, MU Z, LAI J, et al. MXene/Si@SiOx@C layer-by-layer superstructure with auto-adjustable function for superior stable lithium storage[J]. ACS Nano,2019,13(2):2167-2175.
    [29]
    LU C, YANG L, YAN B, et al. Nitrogen-doped Ti3C2 MXene: Mechanism investigation and electrochemical analysis[J]. Advanced Functional Materials,2020:2000852.
    [30]
    ZHAO R, WANG M, ZHAO D, et al. Molecular-level heterostructures assembled from titanium carbide MXene and Ni-Co-Al layered double-hydroxide nanosheets for all-solid-state flexible asymmetric high-energy supercapacitors[J]. ACS Energy Letters,2017,3(1):132-140.
    [31]
    YAO Y, FENG W, CHEN M, et al. Boosting the electrochemical performance of Li-S batteries with a dual polysulfides confinement strategy[J]. Small,2018,14(42):1802516. doi: 10.1002/smll.201802516
    [32]
    GUO X, XIE X, CHOI S, et al. Sb2O3/MXene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries[J]. Journal of Materials Chemistry A,2017,5(24):12445-12452.
    [33]
    ZOU G, ZHANG Z, GUO J, et al. Synthesis of MXene/Ag composites for extraordinary long cycle lifetime lithium storage at high rates[J]. ACS Applied Materials & Interfaces,2016,8(34):22280-22286. doi: 10.1021/acsami.6b08089
    [34]
    KURRA N, AHMED B, GOGOTSI Y, et al. MXene-on-paper coplanar microsupercapacitors[J]. Advanced Energy Materials,2016,6(24):1601372-1601380.
    [35]
    SONG J, SU D, XIE X, et al. Immobilizing polysulfides with MXene-functionalized separators for stable lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces,2016,8(43):29427-29433.
    [36]
    严康, 关云锋, 丛野, 等. 溶剂热氧化少层Ti3C2 MXene制备二维TiO2/Ti3C2复合光催化剂[J]. 无机化学学报, 2019, 35(7):1203-1211. doi: 10.11862/CJIC.2019.142

    YAN Kang, GUAN Yunfeng, CONG Ye, et al. Preparation of two dimensional TiO2/Ti3C2 photocatalyst by solvothermal oxidation of few-layered Ti3C2 MXene[J]. Chinese Journal of Inorganic Chemistry,2019,35(7):1203-1211(in Chinese). doi: 10.11862/CJIC.2019.142
    [37]
    CHENG L, CHEN Q, LI J, et al. Boosting the photocatalytic activity of CdLa2S4 for hydrogen production using Ti3C2 MXene as a co-catalyst[J]. Applied Catalysis B: Environmental,2020,267:118379. doi: 10.1016/j.apcatb.2019.118379
    [38]
    朱元元, 王李波, 张恒, 等. MXene材料的制备及其对液体石蜡润滑性能的研究[J]. 硅酸盐通报, 2015, 34(10):210-214.

    ZHU Yuanyuan, WANG Libo, ZHANG Heng, et al. Preparation of MXene and its lubrication properties in liquid paraffin[J]. Bulletin of the Chinese Ceramic Society,2015,34(10):210-214(in Chinese).
    [39]
    康瑞洋, 张振宇, 郭梁超, 等. Ti3C2 MXene填充环氧树脂复合材料摩擦学性能研究[J]. 硬质合金, 2019, 36(3):213-220.

    KANG Ruiyang, ZHANG Zhenyu, GUO Langchao, et al. Study on the tribological property of epoxy composites filled with Ti3C2 MXene[J]. Cemented Carbide,2019,36(3):213-220(in Chinese).
    [40]
    LIAN W Q, MAI Y, LIU C S, et al. Two-dimensional Ti3C2 coating as an emerging protective solid-lubricant for tribology[J]. Ceramics International,2018,44(16):20154-20162.
    [41]
    ZHANG Y L, WANG L, ZHANG J L, et al. Fabrication and investigation on the ultra-thin and flexible Ti3C2Tx/co-doped polyaniline electromagnetic interference shielding composite films[J]. Composites Science and Technology,2019,183:107833. doi: 10.1016/j.compscitech.2019.107833
    [42]
    WANG L, SONG P, LIN C T, et al. 3D shapeable, superior electrically conductive cellulose nanofibers/Ti3C2Tx MXene aerogels/epoxy nanocomposites for promising EMI shielding[J]. Research (Washington, D. C.),2020,2020:4093732.
    [43]
    YUN T, KIM H, IQBAL A, et al. Electromagnetic shielding of monolayer MXene assemblies[J]. Advanced Materials,2020,32(9):1906769. doi: 10.1002/adma.201906769
    [44]
    CHENG Y F, MA Y N, LI L Y, et al. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor[J]. ACS Nano,2020,14(2):2145-2155. doi: 10.1021/acsnano.9b08952
    [45]
    RASOOL K, HELAL M, ALI A, et al. Antibacterial activity of Ti3C2Tx MXene[J]. ACS Nano,2016,10(3):3674-3684. doi: 10.1021/acsnano.6b00181
    [46]
    MAYERBERGER E A, STREET R M, MCDANIEL R M, et al. Antibacterial properties of electrospun Ti3C2Tz (MXene)/chitosan nanofibers[J]. RSC Advances,2018,8(62):35386-35394. doi: 10.1039/C8RA06274A
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (5078) PDF downloads(621) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return