CHEN Shuang, LIANG Shujia, GUAN Jiwen. Compression behavior of FRP bars/coral concrete columns under axial compression loading[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3530-3541. DOI: 10.13801/j.cnki.fhclxb.20201217.001
Citation: CHEN Shuang, LIANG Shujia, GUAN Jiwen. Compression behavior of FRP bars/coral concrete columns under axial compression loading[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3530-3541. DOI: 10.13801/j.cnki.fhclxb.20201217.001

Compression behavior of FRP bars/coral concrete columns under axial compression loading

More Information
  • Received Date: October 14, 2020
  • Accepted Date: December 03, 2020
  • Available Online: December 16, 2020
  • The axially loaded bearing capacity tests on 8 fiber reinforced polymer (FRP) bar/coral concrete columns and 1 steel bar/coral concrete column were carried out. Parameters such as reinforcement ratio, stirrup spacing, slenderness ratio and reinforcement type were discussed. The results show that the failure mechanism of FRP reinforced coral concrete column and steel bar/coral concrete column is different, but the mechanical performance is still good. Increasing the diameter of longitudinal reinforcement leads to the decrease of bonding performance between longitudinal reinforcement and concrete protective layer. Reducing the spacing of stirrups is beneficial to improve the ductility of the members, and the higher the aspect ratio, the lower the bearing capacity of the members. Then, based on the data analysis of the compression performance experiment and the comparison of references, it is suggested that the nominal yield strength of carbon fiber reinforced polymer (CFRP) reinforcement should be 0.34fy (fy is the ultimate compressive strength of the reinforcement), and the corresponding theoretical value is similar to the experimental results. Finally, the theoretical calculation formula for bearing capacity of CFRP/coral concrete axial compression column is put forward, which provides a reference for engineering practice.
  • [1]
    MATTA F, EI-SAYED A K, NANNI A, et al. Size effect on concrete shear strength in beams reinforced with fiber-reinforced polymer bars[J]. Aci Structural Journal,2013,110(4):617-628.
    [2]
    龚永智. FRP筋混凝土柱的研究进展[J]. 建筑技术, 2006, 37(11):836-838. DOI: 10.3969/j.issn.1000-4726.2006.11.011

    GONG Y Z. Research progress of FRP reinforced concrete columns[J]. Architecture Technology,2006,37(11):836-838(in Chinese). DOI: 10.3969/j.issn.1000-4726.2006.11.011
    [3]
    张新越, 欧进萍. FRP加筋混凝土短柱受压性能试验研究[J]. 西安建筑科技大学学报: 自然科学版, 2006, 38(4):467-472.

    ZHANG X Y, OU J P. Experimental research on compressive properties of concrete stub square column reinforced with FRP bars[J]. Journal of Xi'an University of Architecture & Technology (Natural Science) Edition,2006,38(4):467-472(in Chinese).
    [4]
    汤杰. BFRP增强珊瑚礁砂混凝土基本构件力学性能研究[D]. 南京: 东南大学, 2018.

    TANG J. Study on the mechanical properties of BFRP reinforced coral reef and sand cconcrete structural members[D]. Nanjing: Southeast University, 2018(in Chinese).
    [5]
    胡乔, 陈小兵, 阳涛, 等. 珊瑚混凝土梁抗弯性能试验研究[J]. 混凝土, 2017(4):21-24, 28. DOI: 10.3969/j.issn.1002-3550.2017.04.006

    HU J, CHEN X B, YANG T, et al. Flexural properties of coral concrete beam[J]. Concrete,2017(4):21-24, 28(in Chinese). DOI: 10.3969/j.issn.1002-3550.2017.04.006
    [6]
    王磊, 李威, 陈爽. 海水浸泡对FRP筋-珊瑚混凝土粘结性能的影响[J]. 复合材料学报, 2018, 35(12):3458-3465.

    WANG L, LI W, CHEN S. Effects of seawater soaking on the bonding properties of FRP bars-coral concrete[J]. Acta Materiae Compositae Sinica,2018,35(12):3458-3465(in Chinese).
    [7]
    李彪, 侯慕轶, 杨勇新, 等. 复材筋珊瑚骨料混凝土梁抗弯性能试验研究[J]. 工业建筑, 2016, 46(11):181-184.

    LI B, HOU M Y, YANG Y X, et al. Experiment study on the flexural behavior of coral aggregate concrete beam with FRP[J]. Industrial Construction,2016,46(11):181-184(in Chinese).
    [8]
    周继凯, 杜钦庆, 袁明亮, 等. GFRP筋抗压力学性能试验研究[J]. 河海大学学报: 自然科学版, 2008, 36(4):542-545.

    ZHOU J K, DU Q Q, YUAN M L, et al. Experimental study on compressive mechanical properties of GFRP rebars[J]. Journal of Hohai University(Natural Sciences),2008,36(4):542-545(in Chinese).
    [9]
    孙丽, 王汉珽. GFRP筋受压力学性能试验[J]. 沈阳建筑大学学报(自然科学版), 2011, 27(6): 1037-1042.

    SUN L, WANG H T. Study of GFRP bar's mechanical properties in compression[J]. Journal of Shenyang Jianzhu University (Natural Science), 2011, 27(6): 1037-1042(in Chinese).
    [10]
    MOHAMED H M, AFIFI M Z, BENMOKRANE B. Performance evaluation of concrete columns reinforced longitudinally with FRP bars and confined with FRP hoops and spirals under axial load[J]. Journal of Bridge Engineering,2014,19(7):04014020.
    [11]
    邓宗才, 张秀丽. GFRP筋纤维混凝土圆柱轴压性能研究[J]. 哈尔滨工程大报, 2018, 39(10):1617-1624.

    DENG Z C, ZHANG X L. Axial compressive behavior of circular concrete columns reinforced with GFRP bars and spirals[J]. Journal of Harbin Engineering University,2018,39(10):1617-1624(in Chinese).
    [12]
    刘霞, 李峰, 佘殷鹏. 玄武岩纤维筋增强聚合物筋增强珊瑚礁砂混凝土柱轴压试验[J]. 复合材料学报, 2020, 37(10): 2428-2438.

    LIU X, LI F, SHE D P. Axial compression test of basalt fiber reinforced polymer reinforced coral reef and sand aggregate concrete column[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2428-2438(in Chinese).
    [13]
    中华人民共和国建设部. 轻骨料混凝土技术规程: JGJ51—2002[S]. 北京: 中国建筑工业出版社, 2002.

    Ministry of Construction of the People’s Republic of China. Technical specification for lightweight aggregate concrete: JGJ51—2002[S]. Beijing: China Architecture & Building Press, 2002(in China).
    [14]
    中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准: GB/T 50152—2012[J]. 北京: 中国建筑工业出版社, 2012.

    Ministry of Housing and Urban Rural Construction of the People's Republic of China. Standard for test methods of concrete structures: GB/T 50152—2012[J]. Beijing: China Architecture & Building Press, 2012(in Chinese).
    [15]
    国家标准局. 纤维增强塑料性能试验方法总则: GB/T1446—2005[S]. 北京: 中国标准出版社, 2005.

    National Bureau of Standards. Fiber-reinforced plastics composites-The generals for determination of properties: GB1446—2005[S]. Beijing: China Standard Press, 2005(in Chinese).
    [16]
    中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB50010—2010[S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of Housing and Urban Rural Construction of the People's Republic of China. Code for design of concrete structures: GB50010—2010[S]. Beijing: China Architecture & Building Press, 2010(in Chinese).
    [17]
    于明伟. 单一纤维FRP筋基本力学性能与混杂FRP筋的研制[D]. 哈尔滨: 哈尔滨工业大学, 2005: 16-35.

    YU M W. The basic mechanical properties of single fiber FRP reinforcement and development of mixed FRP reinforcement[D]. Harbin: Harbin Institute of Technology, 2005: 16-35(in Chinese).
    [18]
    PESSIKI S, PIERONI A. Axial load behavior of large scale spirally reinforced highstrength concrete columns[J]. ACI Structural Journal,1997,94(3):304-314.
    [19]
    米向乾. GFRP筋及GFRP筋混凝土柱受压性能研究[D]. 沈阳: 沈阳建筑大学, 2012.

    MI X Q. Study on the compressive behavior of GFRP Bars and GFRP reinforced concrete columns[D]. Shenyang: Shenyang Jianzhu University, 2012(in Chinese).
    [20]
    李林. 珊瑚混凝土的基本特性研究[D]. 南宁: 广西大学, 2012.

    LI L. Research on basic characteristics of coral concrete[D]. Nanning: Guangxi University, 2012(in Chinese).
    [21]
    陈爽. 湿热海洋环境下FRP筋-珊瑚混凝土粘结滑移性能研究[D]. 南宁: 广西大学, 2019.

    CHEN S. Study on bond property beteewn FRP bars and coral concrete under marine environment[D]. Nanning: Guangxi University, 2019(in Chinese).
    [22]
    过镇海, 张秀琴, 张达成, 等. 混凝土应力-应变全曲线的试验研究[J]. 建筑结构学报, 1982(1):1-12.

    GUO Z H, ZHANG X Q, ZHANG D C, et al. Experimenral investigation of the complete stress-strain curve of concrete[J]. Journal of Building Structures,1982(1):1-12(in Chinese).
    [23]
    达波, 余红发, 麻海燕, 等. 全珊瑚海水混凝土单轴受压应力-应变全曲线试验研究[J]. 建筑结构学报, 2017, 38(1):144-151.

    DA B, YU H F, MA H Y et al. Experimental research on whole stress-strain curves of coral aggregate seawater concrete under uniaxial compression[J]. Journal of Building Structures,2017,38(1):144-151(in Chinese).
    [24]
    中华人民共和国住房和城乡建设部. 纤维增强复合材料工程应技术标准: GB 50608—2011[S]. 北京: 中国建筑工业出版社, 2011.

    Ministry of Housing and Urban Rural Construction of the People's Republic of China. Technical standard for fiber reinforced polymer (FRP) in construction: GB 50608—2011[S]. Beijing: China Architecture & Building Press, 2011(in Chinese).
    [25]
    TOBBI H, FARGHALY A S, BENMOKRANE B. Concrete columns reinforced longitudinally and transversally with glass fiber-reinforced polymer bars[J]. ACI Structural Journal,2012,109(4):551-558.
    [26]
    TOBBI H, FARGHALY A S, BENMOKRANE B. Behavior of concentrically loaded fiber-reinforced polymer reinforced concrete columns with varying reinforcement types and ratios[J]. ACI Structural Journal,2014,111(2):375-385.
  • Related Articles

    [1]SUN Jie, SHEN Zihao, LIAO Haifeng. Investigation on compressive strength of fiber reinforced concrete subjected to the coupling effects of freeze-thaw cycling and loading utilizing fractal theory[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 6101-6110. DOI: 10.13801/j.cnki.fhclxb.20240417.003
    [2]LI Zhenjun, LIU Xi, ZHAO Chenyu, WANG Chi, TIAN Xin. Pore structure and mechanical properties of steel fiber reinforced geopolymer recycled aggregate concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5516-5526. DOI: 10.13801/j.cnki.fhclxb.20240023.002
    [3]WEN Yuan, LIU Xi, ZHANG Jiayuan, MA Yonggang. Mechanical properties and pore structure research of geopolymer cold-bonded lightweight aggregate concrete using fractal theory[J]. Acta Materiae Compositae Sinica.
    [4]ZHAO Yu, SHEN Guanghai, ZHU Lingli, DING Yahong, GUAN Xuemao. Fractal dimension-based fine-scale damage law for uniaxial compression test of 3D printed steel slag cementitious materials[J]. Acta Materiae Compositae Sinica.
    [5]ZHANG Wei, LIU Chao, LIU Huawei, LIN Xin, ZHANG Zhining. Freeze-thaw damage deterioration mechanism of rice husk ash concrete based on pore volume fractal dimension[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4733-4744. DOI: 10.13801/j.cnki.fhclxb.20221014.004
    [6]CAO Feng, QIAO Hongxia, LI Shuangying, ZHAO Ziyan, SHU Xiuyuan, CUI Lijun. Strength and pore characteristics of highland barley straw ash-magnesium oxychloride cement composite under salt freezing coupling damage[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2972-2987. DOI: 10.13801/j.cnki.fhclxb.20220629.003
    [7]XUE Weipei, LIU Xiaoyuan, YAO Zhishu, CHENG Hua, LI Haopeng. Effects of different damage sources on pore structure change characteristics of basalt fiber reinforced concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2285-2293. DOI: 10.13801/j.cnki.fhclxb.20200219.001
    [8]SHANG Xiaoyu, YANG Jingwei, LI Jiangshan. Fractal characteristics of meso-failure crack in recycled coarse aggregate concrete based on CT image[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1774-1784. DOI: 10.13801/j.cnki.fhclxb.20190917.002
    [9]GAO Xiang, HUANG Wei, WEI Ya, ZHONG Yanhui. Experiment and modeling for compressive strength of polyurethane grout materials[J]. Acta Materiae Compositae Sinica, 2017, 34(2): 438-445. DOI: 10.13801/j.cnki.fhclxb.20160413.002
    [10]HE Fei, HE Xiaodong, LI Yao. Fractal characteristic of the porous structure of the additive silica xerogels[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 81-85.
  • Cited by

    Periodical cited type(8)

    1. 谭浩,张文彬,卢文玉,祁志强,蔡红珍,杨科研. 高粱秸秆负载HKUST-1对四环素的吸附行为与机制. 复合材料学报. 2025(01): 514-526 . 本站查看
    2. 李碧秋,李希成,熊俊夫,李金韩,贾博雅,汪长征. 铋系光电催化剂降解水中有机污染物的研究进展. 材料工程. 2024(06): 92-108 .
    3. 黄鹏伟,李静,林博,王宜民,陈仪,谢楠耿. AgI/BiOI异质结光电催化甲醇氧化. 山西化工. 2024(07): 4-6+10 .
    4. 杜书雅,王旭东,董永浩,吕嘉辰,李洁. MOF-808/AgBr的制备及光催化降解盐酸四环素性能研究. 功能材料. 2024(11): 11137-11146 .
    5. 严惠儒,林水源,钟祥康,黄学帅,杨玉如,冯梓盈,朱淼,谢伟. Au/BiOI花状微米球的制备及其对抗生素的降解特性. 广州化工. 2023(05): 43-46 .
    6. 王振宇,刘燕才,陈琨,乔江浩,李晓伟. 等离子喷涂-化学气相沉积制备α/β-Bi_2O_3薄膜的相结构调控和光催化降解性能. 硅酸盐学报. 2023(07): 1800-1810 .
    7. 刘松林,王仲民,钱熹,王童,冉兆晋,黄志民,吴晨曦,李桂银. 磁性氮掺杂石墨烯改性柿单宁复合材料对四环素的吸附行为. 复合材料学报. 2023(07): 4048-4059 . 本站查看
    8. 袁亦雷,谢水波,刘岳林,史艳丹,刘迎九. g-C_3N_4-Bi_2O_3/Al_2O_3复合材料光催化还原水中U(Ⅵ). 化工环保. 2022(05): 609-615 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (1121) PDF downloads (83) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return