Volume 38 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
LIU Xiuyun, CHEN Danli, GUAN Qifeng, et al. Evaluation method of biomaterial degradation based on in vivo imaging system[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 487-495. doi: 10.13801/j.cnki.fhclxb.20201215.009
Citation: LIU Xiuyun, CHEN Danli, GUAN Qifeng, et al. Evaluation method of biomaterial degradation based on in vivo imaging system[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 487-495. doi: 10.13801/j.cnki.fhclxb.20201215.009

Evaluation method of biomaterial degradation based on in vivo imaging system

doi: 10.13801/j.cnki.fhclxb.20201215.009
  • Received Date: 2020-04-23
  • Accepted Date: 2020-06-02
  • Available Online: 2020-12-16
  • Publish Date: 2021-02-15
  • Degradable material is an important part of biomaterials, its degradation performance in vivo has great influence on the final success after implantation. Thus, the method of evaluating the degradation of the materials in vivo is crucial to the evaluation of material performance. The traditional method to estimate the degradation in vivo needs to take out different batches of degradation samples at each sampling point, which prevents the continuous measurement of the degradation process and it needs a large number of samples. In vivo imaging system (IVIS) has the characteristics of non-invasive and strong operability, which provides a way to solve the problems above. In this study, we established a method to detect the degradation performance of degradable materials with IVIS. The research method was that the near-infrared fluorescent dye was labeled on the degradable materials by chemical reaction, and then using the change of fluorescence intensity to reflect the degradation degree of the materials. The in vivo degradation experimental results show that the fluorescent labeling materials prepared by this method have high fluorescence stability, and the fitting effect of fluorescence intensity and mass loss in the process of material degradation is good (R2 = 0.9994). In conclusion, this method solves the problem of large amount of samples in the traditional method of measuring material degradation, and improves the continuity of the experimental process.

     

  • loading
  • [1]
    HELLING A L, TSEKOURA E K, BIGGS M, et al. In vitro enzymatic degradation of tissue grafts and collagen biomaterials by matrix metalloproteinases: Improving the collagenase assay[J]. ACS Biomaterials Science & Engineering,2017,3(9):1922-1932.
    [2]
    CHU Z, ZHENG Q, GUO M, et al. The effect of fluid shear stress on the in vitro degradation of poly(lactide-co-glycolide) acid membranes[J]. Journal of Biomedical Materials Research Part A,2016,104(9):2315-2324. doi: 10.1002/jbm.a.35766
    [3]
    LU L, PETER S J, LYMAN M D, et al. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams[J]. Biomaterials,2000,21(18):1837-1845. doi: 10.1016/S0142-9612(00)00047-8
    [4]
    FREIER T, KUNZE C, NISCHAN C, et al. In vitro and in vivo degradation studies for development of a biodegradable patch based on poly(3-hydroxybutyrate)[J]. Biomaterials,2002,23(13):2649-2657. doi: 10.1016/S0142-9612(01)00405-7
    [5]
    QIU L. In vivo degradation and tissue compatibility of polyphosphazene blend films[J]. Journal of Biomedical Engineering,2002,19(2):191-195.
    [6]
    BERGSMA J E, ROZEMA F R, BOS R R, et al. In vivo degradation and biocompatibility study of in vitro pre-degraded as-polymerized polyactide particles[J]. Biomaterials,1995,16(4):267-274. doi: 10.1016/0142-9612(95)93253-A
    [7]
    YANG F H, NIU X F, GU X N, et al. Biodegradable magnesium-incorporated poly(L-lactic acid) microspheres for manipulation of drug release and alleviation of inflammatory response[J]. ACS Applied Materials & Interfaces,2019,11(26):23546-23557. doi: 10.1021/acsami.9b03766
    [8]
    NIU X F, LIU Z N, HU J, et al. Microspheres assembled from chitosan-graft-poly(lactic acid) micelle-like core-shell nanospheres for distinctly controlled release of hydrophobic and hydrophilic biomolecules[J]. Macromolecular Bioscience,2016,16:1039-1047. doi: 10.1002/mabi.201600020
    [9]
    潘永明, 金平, 徐剑钦, 等. 基于3.0 T磁共振成像系统初步观察WHBE兔脑部形态解剖结构[J]. 中国实验动物学报, 2017, 25(4):356-361.

    PAN Yongming, JIN Ping, XU Jianqin, et al. Preliminary observation of the anatomical structures of the brain in WHBE rabbits by 3.0 T magnetic resonance imaging system[J]. Acta Laboratorium Animalis Scientia Sinica,2017,25(4):356-361(in Chinese).
    [10]
    李珂, 赵光, 高春芳, 等. 小动物活体成像技术的应用进展[J]. 实用医药杂志, 2012, 29(1):81-82. doi: 10.3969/j.issn.1671-4008.2012.01.057

    LI Ke, ZHAO Guang, GAO Chunfang, et al. Advances in the application of in vivo imaging technology[J]. Practical Journal of Medicine & Pharmacy,2012,29(1):81-82(in Chinese). doi: 10.3969/j.issn.1671-4008.2012.01.057
    [11]
    赵年欢, 崔邦平, 王朋, 等. 生物发光成像示踪干细胞移植的应用进展[J]. 巴楚医学, 2018, 1(1):125-128.

    ZHAO Nianhuan, CUI Bangping, WANG Peng, et al. Advances in the application of bioluminescence imaging tracing in stem cell transplantation[J]. Bachu Medical Journal,2018,1(1):125-128(in Chinese).
    [12]
    GONDI C S, VEERAVALLI K K, GORANTLA B, et al. Human umbilical cord blood stem cells show PDGF-D-dependent glioma cell tropism in vitro and in vivo[J]. Neuro Oncology,2010,12(5):453-465.
    [13]
    柴凡, 周耘裔, 肖庚富. 活体生物发光成像技术及其在病毒感染研究中的应用[J]. 微生物学报, 2011, 51(4):431-437.

    CHAI Fan, ZHOU Yunyi, XIAO Gengfu. Bioluminescence in-vivo imaging technology and its application in the study of viral infection-A review[J]. Acta Microbiologica Sinica,2011,51(4):431-437(in Chinese).
    [14]
    GUTOWSKI M B, WILSON L, VAN GELDER R N, et al. In vivo bioluminescence imaging for longitudinal monitoring of inflammation in animal models of uveitis[J]. Investigative Ophthalmology & Visual Science,2017,58(3):1521-1528.
    [15]
    YANAGIHARA K, TAKIGAHIRA M, TAKESHITA F, et al. A photon counting technique for quantitatively evaluating progression of peritoneal tumor dissemination[J]. Cancer Research,2006,66(15):7532-7539. doi: 10.1158/0008-5472.CAN-05-3259
    [16]
    IYER M, SALAZAR F B, WU L, et al. Bioluminescence imaging of systemic tumor targeting using a prostate-specific lentiviral vector[J]. Human Gene Therapy,2006,17(1):125-132. doi: 10.1089/hum.2006.17.125
    [17]
    MA T C, HOU Y, ZENG J F, et al. Dual-ratiometric target-triggered fluorescent probe for simultaneous quantitative visualization of tumor microenvironment protease activity and pH & ITin vivo & IT[J]. Journal of the American Chemical Society,2018,140(1):211-218. doi: 10.1021/jacs.7b08900
    [18]
    CHOI H S, GIBBS S L, LEE J H, et al. Targeted zwitterionic near-infrared fluorophores for improved optical imaging[J]. Nature Biotechnology,2013,31(2):148-153. doi: 10.1038/nbt.2468
    [19]
    CHOI K Y, CHUNG H, MIN K H, et al. Self-assembled hyaluronic acid nanoparticles for active tumor targeting[J]. Biomaterials,2010,31(1):106-114. doi: 10.1016/j.biomaterials.2009.09.030
    [20]
    WINNARD P T, KLUTH J B, RAMAN V. Noninvasive optical tracking of red fluorescent protein-expressing cancer cells in a model of metastatic breast cancer[J]. Neoplasia,2006,8(10):796-806. doi: 10.1593/neo.06304
    [21]
    ZOU P, XU S, POVOSKI S P, et al. Near-infrared fluorescence labeled anti-TAG-72 monoclonal antibodies for tumor imaging in colorectal cancer xenograft mice[J]. Molecular Pharmaceutics,2009,6(2):428-440. doi: 10.1021/mp9000052
    [22]
    赵小亮, 刘曦, 杨忆, 等. 利用活体成像技术研究海茸β-1,3/1,6-葡聚糖在小鼠体内的分布[J]. 高等学校化学学报, 2017, 38(8):1368-1374.

    ZHAO Xiaoliang, LIU Xi, YANG Yi, et al. Detection of animal tissue distribution of β-1,3/1,6-Glucan from durvillaea antarctica by in vivo imaging[J]. Chemical Journal of Chinese Universities,2017,38(8):1368-1374(in Chinese).
    [23]
    MANNI I, DI ROCCO G, FUSCO S, et al. Monitoring the response of hyperbilirubinemia in the mouse brain by in vivo bioluminescence Imaging[J]. International Journal of Molecular Sciences,2017,18(1):50.
    [24]
    LIAO A H, LI Y K, LEE W J, et al. Estimating the delivery efficiency of drug-loaded microbubbles in cancer cells with ultrasound and bioluminescence imaging[J]. Ultrasound in Medicine and Biology,2012,38(11):1938-1948. doi: 10.1016/j.ultrasmedbio.2012.07.013
    [25]
    HAN X J, WEI Y F, WAN Y Y, et al. Development of a novel liposomal nanodelivery system for bioluminescence imaging and targeted drug delivery in ErbB2-overexpressing metastatic ovarian carcinoma[J]. International Journal of Molecular Medicine,2014,34(5):1225-1232. doi: 10.3892/ijmm.2014.1922
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (1287) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return