Volume 38 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
XU Huimin, LI Lijuan, OUYANG Xinhua, et al. Enhanced conductivity and regulated mechanism of PEDOT:PSS film with biomass-derived gallic acid[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2313-2325. doi: 10.13801/j.cnki.fhclxb.20201126.003
Citation: XU Huimin, LI Lijuan, OUYANG Xinhua, et al. Enhanced conductivity and regulated mechanism of PEDOT:PSS film with biomass-derived gallic acid[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2313-2325. doi: 10.13801/j.cnki.fhclxb.20201126.003

Enhanced conductivity and regulated mechanism of PEDOT:PSS film with biomass-derived gallic acid

doi: 10.13801/j.cnki.fhclxb.20201126.003
  • Received Date: 2020-09-10
  • Accepted Date: 2020-11-08
  • Available Online: 2020-11-26
  • Publish Date: 2021-07-15
  • Since poly(3, 4-ethylenedioxythiophene) (PEDOT) has advantages of flexible stretchable, high biocompatibility, and controllable conductivity and work function, it has emerged extensive application prospects in the flexible wearable electronic devices. In recent years, as the increasingly resources crisis, research and development of the high efficient, green, and sustainable bio-based dopant for PEDOT: PSS (polystyrene sulfonate) system has attracted serious concerns of the relevant researchers. For the first time, this work reported a new approach to prepare high-performance PEDOT conductive film using biomass-derived aromatic weak acid, i.e., gallic acid (GA, pKa of 4.41). Its special structure of adjacent multiple phenolic hydroxyl groups created a stable dual-hydrogen bonds combination with PSSH. The binding energy of GA-PEDOT is significantly higher than that of its petroleum-based strong acidic isomer (2, 4, 6-trihydroxybenzoic acid with pKa of 1.68, ) with PEDOT. GA doping not only realized the high efficient phase separation of PEDOT-PSS, but also optimized the conformational of PEDOT molecular chain, the optimal morphology and orientation of aggregation structure. This endowed GA with high doping efficiency, and the conductivity of PEDOT conductive film can be upgraded by three orders of magnitude to 1050 S/cm, only with 1.2% of doping amount of GA. That has reached the highest conductive feature in all reported bio-based dopants, and the doping efficiency of GA is significantly higher than that of bio-based dopant and its petroleum-based strong acidic isomer.

     

  • loading
  • [1]
    PENG R, WAN Z, SONG W, et al. Improving performance of non-fullerene organic solar cells over 13% by employing silver nanowires doped PEDOT: PSS composite interface[J]. ACS Appl Mater Interfaces,2019,11:42447. doi: 10.1021/acsami.9b16404
    [2]
    LEE C, KANG D J, KANG H, et al. Simultaneously enhancing light extraction and device stability of organic light-emitting diodes using a corrugated polymer nanosphere templated PEDOT: PSS layer[J]. Adv Energy Mater.,2014,4:1301345. doi: 10.1002/aenm.201301345
    [3]
    FAN X, NIE W, TSAI H, et al. PEDOT: PSS for flexible and stretchable electronics: modifications, strategies, and applications[J]. Adv Sci,2019,6:1900813. doi: 10.1002/advs.201900813
    [4]
    YAN H, JO T, OKUZAKI H. Highly conductive and transparent Poly (3, 4-ethylenedioxythiophene)/ Poly (4-styrenesulfonate) (PEDOT/PSS) thin films[J]. Polym J.,2009,41:1028. doi: 10.1295/polymj.PJ2009143
    [5]
    LIM K, JUNG S, LEE S, et al. The enhancement of electrical and optical properties of PEDOT: PSS using one-step dynamic etching for flexible application[J]. Org Electron.,2014,15:1849. doi: 10.1016/j.orgel.2014.04.014
    [6]
    FAN X, WANG J. Z, WANG H. B, et al. Bendable ITO-free organic solar cells with highly conductive and flexible PEDOT: PSS electrodes on plastic substrates[J]. ACS Appl Mater Interfaces,2015,7:16287. doi: 10.1021/acsami.5b02830
    [7]
    ZHAO D, ZHANG Q, CHEN W, et al. Highly flexible and conductive cellulose-mediated PEDOT: PSS/ MWCNT composite films for supercapacitor electrodes[J]. ACS Appl Mater Interfaces,2017,9(15):13213. doi: 10.1021/acsami.7b01852
    [8]
    XIA Y, SUN K, OUYANG J. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices[J]. Adv Mater,2012,24:2436. doi: 10.1002/adma.201104795
    [9]
    YEON C, YUN S J, KIM J, et al. PEDOT: PSS films with greatly enhanced conductivity via nitric acid treatment at room temperature and their application as Pt/TCO-free counter electrodes in dyesensitized solar cells[J]. Adv Electron Mater,2015,1(10):1500121. doi: 10.1002/aelm.201500121
    [10]
    NA S. I, KIM S. S, JO J. D, et al. Efficient and flexible ito-free organic solar cells using highly conductive polymer anodes[J]. Adv Mater,2008,20:4061. doi: 10.1002/adma.200800338
    [11]
    OUYANG J. Solution-processed PEDOT: PSS films with conductivities as indium tin oxide through a treatment with mild and weak organic acids[J]. ACS Applied Material Interfaces,2013,5(24):13082-13088. doi: 10.1021/am404113n
    [12]
    LI Y, TANIGAWA R, OKUZAKI H. Soft and flexible PEDOT/PSS films for applications to soft actuators[J]. Smart Mater Struct,2014,23(7):074010. doi: 10.1088/0964-1726/23/7/074010
    [13]
    HE H, ZHANG L, GUAN X, et al. Biocompatible conductive polymers with high conductivity and high stretchability[J]. ACS Appl Mater Interfaces,2019,11(29):26185-26193. doi: 10.1021/acsami.9b07325
    [14]
    YI Z, ZHAO Y, LI P, et al. The effect of tannic acids on the electrical conductivity of PEDOT: PSS films[J]. Applied Surface Science,2018,448:583-588. doi: 10.1016/j.apsusc.2018.04.168
    [15]
    KIM J, PATEL R, JUNG B J, et al. Simultaneous improvement of performance and stability in PEDOT: PSS–Sorbitol composite based flexible thermoelectric modules by novel design and fabrication process[J]. Macromol Res,2018,26(1):61-65. doi: 10.1007/s13233-018-6008-1
    [16]
    YANG E, KIM J, JUNG B J, et al. Enhanced thermoelectric properties of sorbitol-mixed PEDOT: PSS thin films by chemical reduction[J]. J Mat Sci: Mater Electron,2015,26(5):2838-2843. doi: 10.1007/s10854-015-2766-0
    [17]
    BOLES J S, CRERAR D A, GRISSOM G, et al. Aqueous thermal degradation of gallic acid[J]. Geochim Cosmochim Acta,1988,52(2):341-344. doi: 10.1016/0016-7037(88)90089-0
    [18]
    KIM N, KANG H, LEE J. H, et al. Highly conductive all-plastic electrodes fabricated using a novel chemically controlled transfer-printing method[J]. Adv Mater,2015,27:2317. doi: 10.1002/adma.201500078
    [19]
    洪伟良, 刘剑洪, 赵凤起, 等. 纳米Pb(II)-没食子酸配合物的合成及其燃烧催化性能[J]. 化学学报, 2005(3):249-253+178. doi: 10.3321/j.issn:0567-7351.2005.03.014

    HONG W L, LIU J H, ZHAO F Q, et al. Synthesis of nano-Pb (II)-gallic acid complexes and their combustion catalytic properties[J]. Acta Chemica Sinica,2005(3):249-253+178(in Chinese). doi: 10.3321/j.issn:0567-7351.2005.03.014
    [20]
    KRILOV A, HOLMGREN A, GREF R, et al. Effects of gallic acid on metals: An FT-IR study of complexes between gallic acid and sawblade steel[J]. Holzforschung,1993,47(3):239-246. doi: 10.1515/hfsg.1993.47.3.239
    [21]
    BOI M, GORGIEVA S, KOKOL V. Laccase-mediated functionalization of chitosan by caffeic and gallic acids for modulating antioxidant and antimicrobial properties[J]. Carbohydr Polym,2012,87(4):2388-2398. doi: 10.1016/j.carbpol.2011.11.006
    [22]
    YU Z, XIA Y, DU D, et al. PEDOT: PSS films with metallic conductivity through a treatment with common organic solutions of organic salts and their application as a transparent electrode of polymer solar cells[J]. ACS Appl Mater Interfaces,2016:11629.
    [23]
    LIU J, LU J F, KAN J, et al. Synthesis of chitosan-gallic acid conjugate: structure characterization and in vitro anti-diabetic potential[J]. Int J Biol Macromol,2013,62(Complete):321-329.
    [24]
    YU Z, XIA Y, DU D, et al. PEDOT: PSS films with metallic conductivity through a treatment with common organic solutions of organic salts and their application as a transparent electrode of polymer solar cells[J]. ACS Applied Material Interfaces,2016:11629.
    [25]
    REYES-REYES M, CRUZ-CRUZ I, LÓPEZ-SANDOVAL R. Enhancement of the electrical conductivity in PEDOT: PSS Films by the addition of dimethyl sulfate[J]. J Phys Chem C,2010,114(47):20220-20224. doi: 10.1021/jp107386x
    [26]
    TRAN-VAN F, GARREAU, SÉBASTIEN, LOUARN G, et al. Fully undoped and soluble oligo(3, 4-Ethylenedioxythiophene)S: spectroscopic study and electrochemical characterization[J]. J Mater Chem,2001,11(5):1378-1382. doi: 10.1039/b100033k
    [27]
    XIONG S, FU J, LI Z, et al. Modulating the electrochromic performances of transmissive and reflective devices using N,N-Dimethyl formamide modified poly (3, 4-Ethylenedioxythiophene)/Poly (Styrene Sulfonate) blend as active layers[J]. J Macromol Sci Part B-Phys,2015,54(7):799-810. doi: 10.1080/00222348.2015.1037203
    [28]
    CHIU W W, TRAVAS-SEJDIC J, COONEY R P, et al. Studies of dopant effects in Poly(3, 4-ethylenedi-oxythiophene) using raman spectroscopy[J]. J Raman Spectrosc,2010,37:1354-1361.
    [29]
    SINGH V, ARORA S, ARORA M, et al. Characterization of doped PEDOT: PSS and its influence on the performance and ddegradation of organic solar cells[J]. Semicond Sci Technol,2014,29(4):045020. doi: 10.1088/0268-1242/29/4/045020
    [30]
    XU B, GOPALAN S A, GOPALAN A I, et al. Functional solid additive modified PEDOT: PSS as an anode buffer layer for enhanced photovoltaic performance and stability in polymer solar cells[J]. Sci Rep,2017,7:45079. doi: 10.1038/srep45079
    [31]
    XIA Y, OUYANG J. Salt-induced charge screening and significant conductivity enhancement of conducting Poly(3, 4-ethylenedioxythiophene): Poly (styrenesulfonate)[J]. Macromolecules,2009,42(12):4141-4147. doi: 10.1021/ma900327d
    [32]
    XIA Y, SUN K, OUYANG J. Highly conductive Poly(3, 4-ethylenedioxythiophene): Poly(styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells[J]. Energy & Environ Sci,2012,5(1):5325-5332.
    [33]
    FAN Z, LI P, DU D, et al. Significantly enhanced thermoelectric properties of PEDOT: PSS films through sequential post-treatments with common acids and bases[J]. Adv Energy Mater,2017,7(8):1602116. doi: 10.1002/aenm.201602116
    [34]
    CRISPIN X, JAKOBSSON F L E, CRISPIN A, et al. The origin of the high conductivity of Poly(3, 4-ethylenedioxythiophene) Poly(styrenesulfonate) (PEDOT PSS) plastic electrodes[J]. Chem Mat,2006,18(18):4354-4360. doi: 10.1021/cm061032+
    [35]
    PETTERSSON L A A, GHOSH S, INGANAES O. Optical anisotropy in thin films of Poly(3, 4-ethylenedioxythiophene)–Poly(4-styrenesulfonate)[J]. Org Electron,2002,3(3/4):143-148.
    [36]
    DELLEY, B. From molecules to solids with the DMol[sup3] approach[J] J Chem Phys 2000, 113(18): 7756-0.
    [37]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett,1996,77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [38]
    DELLEY B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. J Chem Phys,1990,92(1):508-517. doi: 10.1063/1.458452
    [39]
    DOLG M, WEDIG U, STOLL H, et al. Energy-adjusted ab initio pseudopotentials for the first row transition elements[J]. J Chem Phys,1987,86(2):866-872. doi: 10.1063/1.452288
    [40]
    BERGNER A, DOLG M, KÜCHLE W, et al. Ab initio energy-adjusted pseudopotentials for elements of groups 13-17[J]. Mol Phys,1993,80(6):1431-1441. doi: 10.1080/00268979300103121
    [41]
    DELLEY B. The conductor-like screening model for polymers and surfaces[J]. Mol Simu,2006,32(2):117-123. doi: 10.1080/08927020600589684
    [42]
    KLAMT A, SCHUEUERMANN G J. Cosmo: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient[J]. J Chem Soc Perkin Trans,1993,2(5):799-805.
    [43]
    GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. J Chem Phys,2010,132(15):154104. doi: 10.1063/1.3382344
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (1680) PDF downloads(118) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return