Volume 38 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
LI Yongxuan, ZHU Yunlai, PENG Bo, et al. Preparation and properties of biodegradable polyester elastomer particle modified poly(lactic acid) composites[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2527-2537. doi: 10.13801/j.cnki.fhclxb.20201116.002
Citation: LI Yongxuan, ZHU Yunlai, PENG Bo, et al. Preparation and properties of biodegradable polyester elastomer particle modified poly(lactic acid) composites[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2527-2537. doi: 10.13801/j.cnki.fhclxb.20201116.002

Preparation and properties of biodegradable polyester elastomer particle modified poly(lactic acid) composites

doi: 10.13801/j.cnki.fhclxb.20201116.002
  • Received Date: 2020-08-31
  • Accepted Date: 2020-11-08
  • Available Online: 2020-11-16
  • Publish Date: 2021-08-15
  • The carboxyl-terminated biodegradable polyester elastomer particles (CBEP)/poly (lactic acid) (PLA) composites were prepared by different particle sizes of CBEP blended with PLA. The mechanical, crystallization and degradation properties of the composites were tested, and the effect and mechanism of CBEP on the properties of PLA were studied.The results show that CBEP can significantly improve the toughness of PLA, and the composite specimens appear necking during stretching, especially the elongation at break of the composites with 7.5% (mass ratio to PLA) CBEP-a (particle size of 200 nm) increases from 4.6% of neat PLA to 155%. And the notched impact strength of CBEP/PLA composites is up to 2 times of neat PLA. CBEP can also improve the crystallization properties of PLA, in which the isothermal crystallization half-crystallization time of the composites with 7.5% CBEP-a (particle size of 200 nm) is shortened by 21.4% compared with the neat PLA.The results of the degradation experiments show that the mass loss of the composites with 10% CBEP-a (particle size of 200 nm) in lipase and soil environment is increased from 0.34% and 0.25% of neat PLA to 2.52% and 1.20%, respectively. The CBEP/PLA composites have broad development and application in the fields of biomedicine and environmentally friendly materials.

     

  • loading
  • [1]
    MCDEVITT J P, CRIDDLE C S, MORSE M, et al. Addressing the issue of microplastics in the wake of the microbead-free waters act—A new standard can facilitate improved policy[J]. Environmental Science & Technology,2017,51(12):6611-6617.
    [2]
    SCOTT Alex, TULLO Alex. Europe takes action against single-use plastics[J]. C & EN Global Enterprise,2018,96(23):4.
    [3]
    陈学思, 陈国强, 陶友华, 等. 生态环境高分子的研究进展[J]. 高分子学报, 2019, 50(10):1068-1082. doi: 10.11777/j.issn1000-3304.2019.19124

    CHEN Xuesi, CHEN Guoqiang, TAO Youhua, et al. Research progress in eco-polymers[J]. Acta Polymerica Sinica,2019,50(10):1068-1082(in Chinese). doi: 10.11777/j.issn1000-3304.2019.19124
    [4]
    XU Y H, ZHOU F Y, ZHOU D M, et al. Degradation behaviors of biodegradable aliphatic polyesters and polycarbonates[J]. Journal of Biobased Materials and Bioenergy,2020,14(2):155-168. doi: 10.1166/jbmb.2020.1958
    [5]
    MURARIU M, DUBOIS P. PLA composites: From production to properties[J]. Advanced Drug Delivery Reviews,2016,107:17-46. doi: 10.1016/j.addr.2016.04.003
    [6]
    AHMED T, SHAHID M, AZEEM F, et al. Biodegradation of plastics: Current scenario and future prospects for environmental safety[J]. Environmental Science and Pollution Research,2018,25(8):7287-7298. doi: 10.1007/s11356-018-1234-9
    [7]
    QI X, REN Y W, WANG X Z. New advances in the biodegradation of poly(lactic) acid[J]. International Biodeterioration & Biodegradation,2017,117:215-223.
    [8]
    侯哲. 聚乳酸可降解塑料食品包装研究进展及其设计应用[J]. 塑料科技, 2018, 46(6):131-134.

    HOU Zhe. Research progress, design and application of polylactic acid degradable plastic food packaging[J]. Plastics Science and Technology,2018,46(6):131-134(in Chinese).
    [9]
    丁茜, 余佳, 蒋馨漫, 等. 生物降解地膜材料的研究进展[J]. 工程塑料应用, 2019, 47(12):150-153. doi: 10.3969/j.issn.1001-3539.2019.12.028

    DING Qian, YU Jia, JIANG Xinman, et al. Research progress on biodegradable mulching film materials[J]. Engineering Plastics Application,2019,47(12):150-153(in Chinese). doi: 10.3969/j.issn.1001-3539.2019.12.028
    [10]
    何静. 羟脯氨酸共聚改性聚乳酸的研究及其性能测试[J]. 化工新型材料, 2015, 43(9):216-218.

    HE Jing. Study and property test of modified poly(lactic acid)with hydroxy proline[J]. New Chemical Materials,2015,43(9):216-218(in Chinese).
    [11]
    AKAMPUMUZA O, WAMBUA P M, AHMED A, et al. Review of the applications of biocomposites in the automotive industry[J]. Polymer Composites,2017,38(11):2553-2569. doi: 10.1002/pc.23847
    [12]
    LIU H Z, ZHANG J W. Research progress in toughening modification of poly(lactic acid)[J]. Journal of Polymer Science Part B: Polymer Physics,2011,49(15):1051-1083. doi: 10.1002/polb.22283
    [13]
    TOKIWA Y, CALABIA B P. Biodegradability and biodegradation of poly(lactide)[J]. Applied Microbiology and Biotechnology,2006,72(2):244-251. doi: 10.1007/s00253-006-0488-1
    [14]
    史可, 苏婷婷, 王战勇. 可降解塑料聚乳酸(PLA)生物降解性能进展[J]. 塑料, 2019, 48(3):36-41.

    SHI Ke, SU Tingting, WANG Zhanyong. Progress on biodegradability of degradable plastic polylactic Acid (PLA)[J]. Plastics,2019,48(3):36-41(in Chinese).
    [15]
    邢玉清, 吴贵国, 邢军. 化学合成全降解塑料-聚乳酸[J]. 工程塑料应用, 2002, 12:57-58. doi: 10.3969/j.issn.1001-3539.2002.10.019

    XING Yuqing, WU Guiguo, XING Jun. Chemosynthesis of perfectly degradable plastics polylactic acid[J]. Engineering Plastics Application,2002,12:57-58(in Chinese). doi: 10.3969/j.issn.1001-3539.2002.10.019
    [16]
    张玥珺, 余晓磊, 赵西坡, 等. 聚乳酸共聚增韧研究及其应用进展[J]. 化工新型材料, 2018, 46(10):280-283.

    ZHANG Yuejun, YU Xiaolei, ZHAO Xipo, et al. Study on PLA copolymerization toughening and its application[J]. New Chemical Materials,2018,46(10):280-283(in Chinese).
    [17]
    JIANG Z Y, CHANG Y, CHEN Z Z. Catalyst free synthesis of poly(l-lactic acid)-poly(propylene glycol) multiblock copolymers and their properties[J]. Journal of Applied Polymer Science,2017,134(37):45299. doi: 10.1002/app.45299
    [18]
    高俊, 赵慧, 李利燕, 等. 聚乳酸-聚乙二醇-聚乳酸/聚(N-乙烯基吡咯烷酮)交联共聚物膜的制备与性能[J]. 高分子材料科学与工程, 2017, 33(1):18-22.

    GAO Jun, ZHAO Hui, LI Liyan, et al. Preparation and properties of poly(lactide)-poly(ethylene glycol)-poly(lactide)/poly(N-vinylpyrrolidone) crosslinked copolymer films[J]. Polymer Materials Science and Engineering,2017,33(1):18-22(in Chinese).
    [19]
    QIANG T, CHOU Y X, GAO H H. Environmental impacts of styrene-butadiene-styrene toughened wood fiber/polylactide composites: A cradle-to-gate life cycle assessment[J]. International Journal of Environmental Research and Public Health,2019,16(18):3402. doi: 10.3390/ijerph16183402
    [20]
    MAROUFKHANI M, KATBAB A, LIU W C, et al. Polylactide (PLA) and acrylonitrile butadiene rubber (NBR) blends: The effect of ACN content on morphology, compatibility and mechanical properties[J]. Polymer,2017,115:37-44. doi: 10.1016/j.polymer.2017.03.025
    [21]
    DA SILVA JA, DALMOLIN C, PACHEKOSKI W M, et al. The combined effect of plasticizers and graphene on properties of poly(lactic acid)[J]. Journal of Applied Polymer Science,2018,135(41):46745. doi: 10.1002/app.46745
    [22]
    YANG S L, WU Z H, MENG B, et al. The effects of dioctyl phthalate plasticization on the morphology and thermal, mechanical, and rheological properties of chemical crosslinked polylactide[J]. Journal of Polymer Science, Part B: Polymer Physics,2009,47(12):1136-1145. doi: 10.1002/polb.21716
    [23]
    LIU R, YIN X Q, HUANG A, et al. Preparation of organo-montmorillonite modified poly(lactic acid) and properties of its blends with wood flour[J]. Polymers,2019,11(2):204. doi: 10.3390/polym11020204
    [24]
    YANG B, WANG D, CHEN F, et al. Melting and crystallization behaviors of poly(lactic acid) modified with graphene acting as a nucleating agent[J]. Journal of Macromolecular Science Part B,2019,58(2):290-304. doi: 10.1080/00222348.2018.1564222
    [25]
    WANG Q G, ZAI Y Y, YANG D J, et al. Bio-based elastomer nanoparticles with controllable biodegradability[J]. RSC Advances,2016,6(104):102142-102148. doi: 10.1039/C6RA24336C
    [26]
    彭静, 乔金梁, 魏根栓. 橡胶增韧塑料机理[J]. 高分子通报, 2001, 05:13-24. doi: 10.3969/j.issn.1003-3726.2001.05.003

    PENG Jing, QIAO Jinliang, WEI Genshuan. Toughening mechanism of polymer toughened by rubber[J]. Chinese Polymer Bulletin,2001,05:13-24(in Chinese). doi: 10.3969/j.issn.1003-3726.2001.05.003
    [27]
    周承波. 聚乳酸冷结晶行为的研究[D]. 天津: 天津大学, 2017.

    ZHOU Chengbo. Study on cold crystallization behavior of poly(lactic acid)[D]. Tianjin: Tianjin University, 2017(in Chinese).
    [28]
    ZHAO Y Y, QIU Z B, YANG W T. Effect of multi-walled carbon nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(L-lactide)[J]. Compo-sites Science and Technology,2009,69(5):627-632. doi: 10.1016/j.compscitech.2008.12.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (996) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return