Volume 38 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
LI Xiaoyan, HE Dengwu, LI Guanchao, et al. Preparation and characterization of Bi2O3-Bi2WO6 direct Z-scheme heterojunction and photocatalytic reduction of U(VI) under visible light irradiation[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2646-2654. doi: 10.13801/j.cnki.fhclxb.20201111.004
Citation: LI Xiaoyan, HE Dengwu, LI Guanchao, et al. Preparation and characterization of Bi2O3-Bi2WO6 direct Z-scheme heterojunction and photocatalytic reduction of U(VI) under visible light irradiation[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2646-2654. doi: 10.13801/j.cnki.fhclxb.20201111.004

Preparation and characterization of Bi2O3-Bi2WO6 direct Z-scheme heterojunction and photocatalytic reduction of U(VI) under visible light irradiation

doi: 10.13801/j.cnki.fhclxb.20201111.004
  • Received Date: 2020-08-24
  • Accepted Date: 2020-10-25
  • Available Online: 2020-11-12
  • Publish Date: 2021-08-15
  • According to the energy band theory, Bi(NO3)3·5H2O was used as bismuth source to synthesize Bi2O3-Bi2WO6 composite photocatalyst materials by hydrothermal calcination. The samples were characterized by means of SEM, XRD, XPS, DRS and EIS, respectively, and the photocatalytic activity was assessed in terms of reduction of U(VI) under visible light irradiation. The results show that the prepared Bi2O3-Bi2WO6 composite materials exhibit enhanced photocatalytic performance for the photo-reduction of U(VI) than the pure Bi2WO6, the optimized photocatalytic efficiency for U(VI) is achieved when the mole ratios of Bi2O3 to Bi2WO6 is 2.4∶1. The improved photocatalytic activity is ascribed to the direct Z-scheme heterojunction between Bi2O3 and Bi2WO6, resulting in the rapid interfacial transfer of photoelectron-hole and wide light response range. This work provides a new idea to design and synthesize the photocatalysts with high visible light activity and understand the enhanced photocatalytic reduction mechanism of U(VI).

     

  • loading
  • [1]
    LIU C, SHU P C, XIE J, et al. A half-wave rectified alternating current electrochemical method for uranium extraction from seawater[J]. Nature Energy,2017,2(4):17007. doi: 10.1038/nenergy.2017.7
    [2]
    王宁, 庞宏伟, 于淑君, 等. 层状双羟基及其复合材料对放射性铀的吸附机理研究: 综述[J]. 化学学报, 2019, 77:143-152. doi: 10.6023/A18090404

    WANG Ning, PANG Hongwei, YU Shujun, et al. Investigation of adsorption mechanism of layered double hydroxides and their composites on radioactive uranium: A review[J]. Acta Chimica Sinica,2019,77:143-152(in Chinese). doi: 10.6023/A18090404
    [3]
    黄国林, 陈中胜, 梁喜珍, 等. 新型交联壳聚糖磁性微珠对U(VI)离子的吸附行为[J]. 化工学报, 2012, 63(3):834-840. doi: 10.3969/j.issn.0438-1157.2012.03.023

    HUANG Guolin, CHEN Zhongsheng, LIANG Xizhen, et al. Adsorption behavior of U(VI) ions from aqueous solution on novel cross-linked magnetic chitosan beads[J]. Journal of Chemical Industry and Engineering,2012,63(3):834-840(in Chinese). doi: 10.3969/j.issn.0438-1157.2012.03.023
    [4]
    SALOMONE V N, MEICHTRY J M, ZAMPIERI G, et al. New insights in the heterogeneous photocatalytic removal of U(VI) in aqueous solution in the presence of 2-propanol[J]. Chemical Engineering Journal,2015,261:27-35. doi: 10.1016/j.cej.2014.06.001
    [5]
    WANG Guanghui, ZHEN Jie, ZHOU Limin, et al. Adsorption and photocatalytic reduction of U(VI) in aqueous TiO2 suspensions enhanced with sodium formate[J]. Journal of Radioanalytical & Nuclear Chemistry,2015,304:579-585. doi: 10.1007/s10967-014-3831-5
    [6]
    郭亚丹, 江海鸿, 卜显忠, 等. 锐钛矿型TiO2的低温制备及其光催化还原六价铀活性研究[J]. 陶瓷学报, 2016, 37(3):283-288.

    GUO Yadan, JIANG Haiou, PU Xianzhong, et al. Low-temperature synthesis and photocatalytic reduction of U(VI) of anatase TiO2[J]. Journal of Ceramics,2016,37(3):283-288(in Chinese).
    [7]
    WANG Jingjing, WANG Yun, WANG Wei. et al. Unable mesoporous g-C3N4 nanosheets as a metal-free catalyst for enhanced visible-light-driven photocatalytic reduction of U(VI)[J]. Chemical Engineering Journal,2020,383:123-132.
    [8]
    张小婧, 刘旸, 张骞, 等. 铋单质及其复合材料在光催化中的应用[J]. 化学进展, 2016, 28(10):1560-1568.

    ZHANG Xiaojing, LIU Yang, ZHANG Qian, et al. Bismuth and bismuth composite photocatalysts[J]. Progress in Chemistry,2016,28(10):1560-1568(in Chinese).
    [9]
    郭琪瑶, 许辉, 郑宣清. Bi2WO6-SrTiO3异质结构光催化剂的合成及其光催化活性[J]. 广东化工, 2017, 44(9):39-41. doi: 10.3969/j.issn.1007-1865.2017.09.016

    GUO Qiyao, XU Hui, ZHENG Xuanqing. Synthesis and photocatalytic activity of Bi2WO6-SrTiO3 heterostructure photocatalysts[J]. Guangdong Chemical Industry,2017,44(9):39-41(in Chinese). doi: 10.3969/j.issn.1007-1865.2017.09.016
    [10]
    SITTIKORN Jonjana, ANUKORN Phuruangrat, SOMCHAI Thongtem, et al. Synthesis, characterization and photocatalysis of heterostructure Ag-Br/Bi2WO6 nanocompo-sites[J]. Materials Letters,2018,216:92-96. doi: 10.1016/j.matlet.2018.01.005
    [11]
    RUAN Xian, HU Yongyou. Effectively enhanced photodegradation of bisphenol a by in-situ g-C3N4-Zn/Bi2WO6 heterojunctions and mechanism study[J]. Chemosphere,2020,246:125782. doi: 10.1016/j.chemosphere.2019.125782
    [12]
    李平, 李海金, 涂文广, 等. Z型光催化材料的研究进展[J]. 物理学报, 2015, 64(9):094209. doi: 10.7498/aps.64.094209

    LI Ping, LI Haijin, TU Wenguang, et al. Photocatalytic application of Z-type system[J]. Acta Physica Sinica,2015,64(9):094209(in Chinese). doi: 10.7498/aps.64.094209
    [13]
    陈博才, 沈洋, 魏建红, 等. 基于g-C3N4的Z-Scheme光催化体系研究进展[J]. 物理化学学报, 2016, 32(6):1371-1382. doi: 10.3866/PKU.WHXB201603155

    CHEN Bocai, SHEN Yang, WEI Jianhong, et al. Research progress on g-C3N4-based Z-scheme photocatalytic system[J]. Acta Physico-Chimica Sinica,2016,32(6):1371-1382(in Chinese). doi: 10.3866/PKU.WHXB201603155
    [14]
    XU Quanlong, ZHANG Liuyang, YU Jiaguo, et al. Direct Z-scheme photocatalysts: Principles, synthesis, and applications[J]. Materials Today,2018,21(10):1042-1063. doi: 10.1016/j.mattod.2018.04.008
    [15]
    CHEN Yongyang, XIE Xin, SI Yushan, et al. Constructing a novel hierarchical β-Ag2MoO4/BiVO4 photocatalyst with Z-scheme heterojunction utilizing Ag as an electron mediator[J]. Applied Surface Science,2019,498:143860. doi: 10.1016/j.apsusc.2019.143860
    [16]
    TANG Qiangyong, CHEN Wenfeng, LV Yanran, et al. Z-scheme hierarchical Cu2S/Bi2WO6 composites for improved photocatalytic activity of glyphosate degradation under visible light irradiation[J]. Separation and Purification Technology,2020,236:116243. doi: 10.1016/j.seppur.2019.116243
    [17]
    XU Quanlong, ZHANG Liuyang, CHENG Bei, et al. S-scheme heterojunction photocatalyst[J]. Chem,2020,6:1543-1559. doi: 10.1016/j.chempr.2020.06.010
    [18]
    陈颖, 韩星月, 梁宏宝, 等. 微波蚀刻法合成RGO-BiOCl/Bi2WO6异质结光催化剂及其光催化活性[J]. 化工学报, 2018, 69(4):1758-1764.

    CHEN Yin, HAN Xingyue, LIANG Hongbao, et al. Synthesis and photocatalytic activity of RGO-BiOCl/Bi2WO6 heterojunction photocatalyst by microwave etching method[J]. Journal of Chemical Industry and Engineering (China),2018,69(4):1758-1764(in Chinese).
    [19]
    HE Wenjie, SUN Yanjun, JIANG Guangming, et al. Activation of amorphous Bi2WO6 with synchronous Bi metal and Bi2O3 coupling: Photocatalysis mechanism and reaction pathway[J]. Applied Catalysis B: Environmental, 2018, 232: 340-347.
    [20]
    BING Xingmei, LI Jia, LIU Jun, et al. Biomimetic synthesis of Bi2O3/Bi2WO6/Mg Al-CLDH hybrids from lotus pollen and their enhanced adsorption and photocatalysis performance[J]. Journal of Photochemistry & Photobiology A: Chemistry,2018,364:449-460.
    [21]
    WANG Tianye, XIAO Guosheng, LI Chenyang, et al. One-step synthesis of a sulfur doped Bi2WO6/Bi2O3 composite with enhanced visible-light photocatalytic activity[J]. Materials Letters,2015,138:81-84. doi: 10.1016/j.matlet.2014.09.106
    [22]
    CHEN Xi, LI Yixuan, LI Li. Facet-engineered surface and interface design of WO3/Bi2WO6 photocatalyst with direct Z-scheme heterojunction for efficient salicylic acid removal[J]. Applied Surface Science,2020,508:144796.
    [23]
    CHU Liangliang, ZHANG Jing, WU Zisheng, et al. Solar-driven photocatalytic removal of organic pollutants over direct Z-Scheme coral-branch shape Bi2O3/SnO2 compo-sites[J]. Materials Characterization,2020,159:110036. doi: 10.1016/j.matchar.2019.110036
    [24]
    陈曦, 王永强, 刘敏敏, 等. Bi2O3/Bi2WO6异质结光催化剂的制备及其光催化活性[J]. 中国石油学报(石油加工科), 2019, 35(1):59-65.

    CHEN Xi, WANG Yongqiang, LIU Minmin, et al. Preparation and photocatalytic activity of Bi2O3/Bi2WO6 heterojunction photocatalysts[J]. Acta Petrolri Sinica (Petroleum Processing Section),2019,35(1):59-65(in Chinese).
    [25]
    WANG Tianye, LIU Shuxia, MAO Wei, et al. Novel Bi2WO6 loaded N-biochar composites with enhanced photocatalytic degradation of rhodamine B and Cr(VI)[J]. Journal of Hazardous Materials,2020,389:121827. doi: 10.1016/j.jhazmat.2019.121827
    [26]
    GAO Xiaoming, ZHANG Rong, SHANG Yanyan, et al. Synergism of 3D g-C3N4 decorated Bi2WO6 microspheres with efficient visible light catalytic activity[J]. Journal of Physics and Chemistry of Solids,2018,119:19-28. doi: 10.1016/j.jpcs.2018.03.032
    [27]
    CUI Yuqi, LI Chaonengzi, GOU Jianfeng, et al. Fabrication of dual Z-scheme MIL-53(Fe)/α-Bi2O3/g-C3N4 ternary composite with enhanced visible light photocatalytic performance[J]. Separation and Purification Technology,2020,232:115959. doi: 10.1016/j.seppur.2019.115959
    [28]
    郑先君, 陈萍萍, 赵梦,等. Cu2O/g-C3N4/Bi2WO6 三元复合光催化剂的制备及性能研究[J]. 化工学报, 2019, 47(12):191-196.

    ZHENG Xianjun, CHEN Pingping, ZHAO Meng, et al. Study on synthesis and property of Cu2O/g-C3N4/Bi2WO6 ternary photocatalyst[J]. New Chemical Materials,2019,47(12):191-196(in Chinese).
    [29]
    FENG Jun, JIANG Tao, HAN Yingchun, et al. Construction of dual Z-scheme Bi2S3/Bi2O3/WO3 ternary film with enhanced visible light photoelectrocatalytic performance[J]. Applied Surface Science,2020,505:144632. doi: 10.1016/j.apsusc.2019.144632
    [30]
    陈克龙, 黄建华. g-C3N4-CdS-NiS复合纳米管的合成及其在可见光下H2生成的光催化活性[J]. 化工学报, 2020, 71(1):397-408.

    CHEN Kelong, HUANG Jianhua. g-C3N4-CdS-NiS compo-site nanotube: Synthesis and its photocatalytic activity for H2 generation under visible light[J]. Journal of Chemical Industry and Engineering (China),2020,71(1):397-408(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (1876) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return