Volume 38 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
LIU Xiaoyun, WANG Wenguang, CHEN Liqing, et al. Effect of thermal cycling treatment on the strength and thermal conductivity of graphite flakes/Al composites[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1192-1199. doi: 10.13801/j.cnki.fhclxb.20201110.001
Citation: LIU Xiaoyun, WANG Wenguang, CHEN Liqing, et al. Effect of thermal cycling treatment on the strength and thermal conductivity of graphite flakes/Al composites[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1192-1199. doi: 10.13801/j.cnki.fhclxb.20201110.001

Effect of thermal cycling treatment on the strength and thermal conductivity of graphite flakes/Al composites

doi: 10.13801/j.cnki.fhclxb.20201110.001
  • Received Date: 2020-08-03
  • Accepted Date: 2020-11-03
  • Available Online: 2020-11-10
  • Publish Date: 2021-04-08
  • The graphite flakes reinforced Al matrix composites (50vol%Gf/6061Al) were fabricated by powder metallurgy technique. The Gf had a well bonding with Al matrix without cracks and pores. The composites were exposed to a thermal cycling test in the temperature range of −50-120℃. The microstructure and properties of 50vol%Gf/6061Al were examined when the composites were tested by 10, 50, 100 and 200 thermal cycles. The density of the composites is almost unchanged under different thermal cycles. With the number of the thermal cycle increasing, the Gf in the composites are cracked due to the stress from the difference of the thermal expansion coefficient between Gf and Al matrix. The strength and thermal conductivity of the composite are decreased with the number of the thermal cycle increasing. After 100 thermal cycles, the bending strength decreases by 27.4% and thermal conductivity decreases by 11.5% compared to that of the sample without thermal cycles. The broken Gf and the cracked interface between Gf and Al matrix could release the thermal stress, therefore, the cracking of the Gf would be retarded. The microstructure and properties of the composites are not serious changed. After 200 thermal cycles, the bending strength decreases by 32% and TC decreases by 13.1% compared to that of the sample without thermal cycles.

     

  • loading
  • [1]
    MALLIK S, EKERE N, BEST N, et al. Investigation of thermal management materials for automotive electronic control units[J]. Applied Thermal Engineering,2011,31(2-3):355-362. doi: 10.1016/j.applthermaleng.2010.09.023
    [2]
    李志强, 谭占秋, 范根莲, 等. 高效热管理用金属基复合材料研究进展[J]. 中国材料进展, 2013(7):431-441.

    LI Zhiqiang, TAN Zhanqiu, FAN Genlian, et al. Progress of metal matrix composites for efficient thermal management applications[J]. Materials China,2013(7):431-441(in Chinese).
    [3]
    MATHIAS J D, GEFFROY P M, SILVAIN J F. Architectural optimization for microelectronic packaging[J]. Applied Thermal Engineering,2009,29(11-12):2391-2395. doi: 10.1016/j.applthermaleng.2008.12.037
    [4]
    SIDHU SS, KUMAR S, BATISH A. Metal matrix composites for thermal management: A review[J]. Critical Reviews in Solid State and Materials Sciences,2016,41(2):132-157. doi: 10.1080/10408436.2015.1076717
    [5]
    曾婧, 彭超群, 王日初, 等. 电子封装用金属基复合材料的研究进展[J]. 中国有色金属学报, 2015(12):3255-3270.

    ZENG J, PENG C Q, WANG R C, et al. Research progress on metal matrix composites for electronic packaging[J]. The Chinese Journal of Nonferrous Metals,2015(12):3255-3270(in Chinese).
    [6]
    XUE C, YU J K. Enhanced thermal transfer and bending strength of SiC/Al composite with controlled interfacial reaction[J]. Materials & Design,2014,53:74-78.
    [7]
    ZHANG W L, DING D Y, GAO P. High volume fraction Si particle-reinforced aluminium matrix composites fabricated by a filtration squeeze casting route[J]. Materials & Design,2016,90:834-838.
    [8]
    LIU X Y, WANG W G, WANG D, et al. Effect of nanometer TiC coated diamond on the strength and thermal conductivity of diamond/Al composites[J]. Materials Chemistry and Physics,2016,182:256-262. doi: 10.1016/j.matchemphys.2016.07.030
    [9]
    RAPE A, LIU X, KULKARNI A, et al. Alloy development for highly conductive thermal management materials using copper-diamond composites fabricated by field assisted sintering technology[J]. Journal of Materials Science,2013,48:1262-1267. doi: 10.1007/s10853-012-6868-2
    [10]
    刘晓云, 王文广, 王东, 等. 片层石墨尺寸对片层石墨/铝复合材料的强度和热导率的影响[J]. 金属学报, 2017, 53:869-878. doi: 10.11900/0412.1961.2017.00015

    LIU X Y, WANG W G, WANG D, et al. Effect of graphite flake size on the strength and thermal conductivity of graphite flakes/Al composites[J]. Acta Metallurgica Sinica,2017,53:869-878(in Chinese). doi: 10.11900/0412.1961.2017.00015
    [11]
    SHAO X Z, SUM W C, JIN Z X, et al. Modeling the in-plane thermal conductivity of a graphite/polymer composite sheet with a very high content of natural flake graphite[J]. Carbon,2012,50:5052. doi: 10.1016/j.carbon.2012.06.045
    [12]
    CHAMROUNE N, MWREIB D, DWLANGE F, et al. Effect of flake powder metallurgy on thermal conductivity of graphite flakes reinforced aluminum matrix composites[J]. Journal of Materials Science,2018,53:8180-8192. doi: 10.1007/s10853-018-2139-1
    [13]
    ZHOU C, CHEN D, ZHANG X B, et al. The roles of geometry and topology structures of graphite fillers on thermal conductivity of the graphite/aluminum composites[J]. Physics Letters A,2015,379:452-457. doi: 10.1016/j.physleta.2014.10.048
    [14]
    LIU B, ZHANG D Q, LI X F, et al. Effect of graphite flakes particle sizes on the microstructure and properties of graphite flakes/copper composites[J]. Journal of Alloys and Compounds,2018,766:382-390. doi: 10.1016/j.jallcom.2018.06.129
    [15]
    KURITA H, MIYAZAKI T, KAWASAKI, A, et al. Interfacial microstructure of graphite flake reinforced aluminum matrix composites fabricated via hot pressing[J]. Composites: Part A,2015,73:125-131. doi: 10.1016/j.compositesa.2015.03.013
    [16]
    LI W J, LIU Y, WU G H. Preparation of graphite flakes/Al with preferred orientation and high thermal conductivity by squeeze casting[J]. Carbon,2015,95:545-551. doi: 10.1016/j.carbon.2015.08.063
    [17]
    HAN X P, HUANG Y, ZHOU S H, et al. Effects of graphene content on thermal and mechanical properties of chromium-coated graphite flakes/Si/Al composites[J]. Journal of Materials Science: Materials in Electronics,2018,29:4179-4189. doi: 10.1007/s10854-017-8363-7
    [18]
    YI L F, YOSHIDA N, ONDA T. Effect of processing conditions on microstructure and thermal conductivity of hot-extruded aluminum/graphite composites[J]. Materials Transactions,2019,60:136-143. doi: 10.2320/matertrans.M2018220
    [19]
    XUE C, BAI H, TAO P F. Analysis on thermal conductivity of graphite/Al composite by experimental and modeling study[J]. Journal of Materials Engineering and Performance,2017,26:327-334. doi: 10.1007/s11665-016-2447-z
    [20]
    XIE H, YU J K, JIANG D P, et al. Microstructure and thermal properties of Cr7C3 coated graphite flakes/Al composites[J]. Materials Research Express,2019,6:066308. doi: 10.1088/2053-1591/ab0d9f
    [21]
    HUANG Y, PENG X Y, YANG Y W, et al. Electroless Cu/Ni plating on graphite flake and the efects to the properties of graphite flake/Si/Al hybrid composites[J]. Metals and Materials International,2018,24:1172-1180. doi: 10.1007/s12540-018-0052-4
    [22]
    XUE C, BAI H, TAO P F, et al. Thermal conductivity and mechanical properties of flake graphite/Al composite with a SiC nano-layer on graphite surface[J]. Materials and Design,2016,108:250-258. doi: 10.1016/j.matdes.2016.06.122
    [23]
    WANG C, BAI H, XUE C, et al. On the influence of carbide coating on the thermal conductivity and flexural strength of X (X=SiC, TiC) coated graphite/Al composites[J]. RSC Advances,2016,6:107483. doi: 10.1039/C6RA21754K
    [24]
    OZDEMIR I, TOPARLI M. An investigation of Al-SiCp composites under thermal cycling[J]. Journal of Composite Materials,2003,37:1839-1850. doi: 10.1177/002199803036245
    [25]
    HUANG Y, OUYANG Q B, GUO Q, et al. Graphite film/aluminum laminate composites with ultrahigh thermal conductivity for thermal management applications[J]. Materials & Design,2016,90:508-515.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (1059) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return