Volume 38 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
WANG Xiaoying, CHU Wendi, GE Mengni, et al. Fabrication of sulfhydryl grafted graphene oxide/polyamide composite membranes for reverse osmosis desalination[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2479-2488. doi: 10.13801/j.cnki.fhclxb.20201030.008
Citation: WANG Xiaoying, CHU Wendi, GE Mengni, et al. Fabrication of sulfhydryl grafted graphene oxide/polyamide composite membranes for reverse osmosis desalination[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2479-2488. doi: 10.13801/j.cnki.fhclxb.20201030.008

Fabrication of sulfhydryl grafted graphene oxide/polyamide composite membranes for reverse osmosis desalination

doi: 10.13801/j.cnki.fhclxb.20201030.008
  • Received Date: 2020-08-13
  • Accepted Date: 2020-10-20
  • Available Online: 2020-10-30
  • Publish Date: 2021-08-15
  • As the core technology of desalination, reverse osmosis membrane technology has a wide application prospect in desalination of seawater and brackish water, preparation of ultra-pure water, sewage backwater and other fields. However, the “trade-off” effect between permeability and selectivity is still a major challenge to restrict the development of it. In this study, surface functionalized (grafted sulfhydryl group) graphene oxide (GO) was incorporated into m-phenylenediamine aqueous solution. Sulfhydryl grafted graphene oxide (GO-SH)/polyamide (PA) composite membranes were prepared by interfacial polymerization of m-phenylenediamine in aqueous phase and trimesoyl chloride in organic phase. TEM, SEM, EDS, FTIR and NMR were used to characterize the powder after grafting, and 2 g·L−1 NaCl solution was used to test the salt rejection property of the membrane, as well as the setting of pH and reaction time of interface polymerization aqueous phase was optimized. The results show that the GO-SH is more uniformly dispersed in the polyamide, the optimized pH is 11 and the reaction time is 4 min. When the modified powder content is 0.09wt%, composite membrane water flux can be up to 48 L·m−2·h−1 and the salt rejection reaches 99.6%, which are 30% and 2.54% higher than that of the GO/PA membrane in this study. Surface functionalized GO effectively solves the compatibility of inorganic nanoparticles and organic polymers, improves the membrane separation performance, and can be expected to further reduce the operating cost of reverse osmosis projects.

     

  • loading
  • [1]
    PENATE B, GARCIA-RODRIGUEZ L. Current trends and future prospects in the design of seawater reverse osmosis desalination technology[J]. Desalination,2012,284:1-8. doi: 10.1016/j.desal.2011.09.010
    [2]
    SAFARPOUR M, KHATAEE A, VATANPOUR V. Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance[J]. Journal of Membrane Science,2015,489:43-54. doi: 10.1016/j.memsci.2015.04.010
    [3]
    GREENLEE L F, LAWLER D F, FREEMAN B D, et al. Reverse osmosis desalination: Water sources, technology, and today's challenges[J]. Water Research,2009,43(9):2317-2348. doi: 10.1016/j.watres.2009.03.010
    [4]
    MCGILVERY C M, ABELLAN P, KLOSOWSKI M M, et al. Nanoscale chemical heterogeneity in aromatic polyamide membranes for reverse osmosis applications[J]. ACS Applied Materials & Interfaces,2020,12(17):19890-19902.
    [5]
    ALBO J, HAGIWARA H, YANAGISHITA H, et al. Structural characterization of thin-film polyamide reverse osmosis membranes[J]. Industrial & Engineering Chemistry Research,2014,53(4):1442-1451.
    [6]
    席丹, 曹从军, 齐萨仁, 等. 超薄皮层反渗透复合膜制备技术的研究进展[J]. 化工进展, 2020:1-10.

    XI D, CAO C J, QI S R, et al. Progress in preparation of ultra-thin composite reverse osmosis membrane[J]. Chemical Industry and Engineering Progress,2020:1-10(in Chinese).
    [7]
    ANTONY A, CHILCOTT T, COSTER H, et al. In situ structural and functional characterization of reverse osmosis membranes using electrical impedance spectroscopy[J]. Journal of Membrane Science,2013,425:89-97.
    [8]
    JIMENEZ-SOLOMON M F, SONG Q L, JELFS K E, et al. Polymer nanofilms with enhanced microporosity by interfacial polymerization[J]. Nature Materials,2016,15(7):760-767. doi: 10.1038/nmat4638
    [9]
    王娇娜, 尹泽芳, 李从举. 静电纺丝复合反渗透膜的改性制备与脱盐性能[J]. 高等学校化学学报, 2016, 37(2):396-402. doi: 10.7503/cjcu20150519

    WANG Q N, YIN Z F, LI C J. Preparation and desalination performance of composite reverse osmosis membrane based on electrospinning technology[J]. Chemical Journal of Chinese Universities,2016,37(2):396-402(in Chinese). doi: 10.7503/cjcu20150519
    [10]
    LI Z H, WANG L, LI Y, et al. Carbon-based functional nanomaterials: Preparation, properties and applications[J]. Composites Science and Technology,2019,179:10-40. doi: 10.1016/j.compscitech.2019.04.028
    [11]
    KWAK S Y, KIM S, HKIM S S. Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane[J]. Environmental Science & Technology,2001,35(11):2388-2394.
    [12]
    TAKEUCHI K, TAKIZAWA Y, KITAZAWA H, et al. Salt rejection behavior of carbon nanotube-polyamide nanocomposite reverse osmosis membranes in several salt solutions[J]. Desalination,2018,443:165-171. doi: 10.1016/j.desal.2018.04.021
    [13]
    LEE T H, LEE M Y, LEE H D, et al. Highly porous carbon nanotube/polysulfone nanocomposite supports for high-flux polyamide reverse osmosis membranes[J]. Journal of Membrane Science,2017,539:441-450. doi: 10.1016/j.memsci.2017.06.027
    [14]
    ABDIKHEIBARI S, LEI W W, DUMEE L F, et al. Novel thin film nanocomposite membranes decorated with few-layered boron nitride nanosheets for simultaneously enhanced water flux and organic fouling resistance[J]. Applied Surface Science,2019,488:565-577. doi: 10.1016/j.apsusc.2019.05.217
    [15]
    ISHII K, IKEDA A, TAKEUCHI T, et al. Silica-based RO membranes for separation of acidic solution[J]. Membranes,2019,9(8):94. doi: 10.3390/membranes9080094
    [16]
    DONG H, ZHAO L, ZHANG L, et al. High-flux reverse osmosis membranes incorporated with NaY zeolite nanoparticles for brackish water desalination[J]. Journal of Membrane Science,2015,476:373-383. doi: 10.1016/j.memsci.2014.11.054
    [17]
    LI Z Y, WANG L, LI Y, et al. Frontiers in carbon dots: Design, properties and applications[J]. Materials Chemistry Frontiers,2019,3(12):2571-2601. doi: 10.1039/C9QM00415G
    [18]
    ZHANG Y, CHUNG T S. Graphene oxide membranes for nanofiltration[J]. Current Opinion in Chemical Engineering,2017,16:9-15. doi: 10.1016/j.coche.2017.03.002
    [19]
    XIA S, YAO L J, ZHAO Y, et al. Preparation of graphene oxide modified polyamide thin film composite membranes with improved hydrophilicity for natural organic matter removal[J]. Chemical Engineering Journal,2015,280:720-727. doi: 10.1016/j.cej.2015.06.063
    [20]
    YIN J, ZHU G C, DENG B L. Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification[J]. Desalination,2016,379:93-101. doi: 10.1016/j.desal.2015.11.001
    [21]
    LAI G S, LAU W J, GOH P S, et al. Tailor-made thin film nanocomposite membrane incorporated with graphene oxide using novel interfacial polymerization technique for enhanced water separation[J]. Chemical Engineering Journal,2018,344:524-534. doi: 10.1016/j.cej.2018.03.116
    [22]
    YIN J, KIM E S, YANG J, et al. Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification[J]. Journal of Membrane Science,2012,423:238-246.
    [23]
    DONG L Q, FENG Y Y, WANG L, et al. Azobenzene-based solar thermal fuels: Design, properties, and applications[J]. Chemical Society Reviews,2018,47(19):7339-7368. doi: 10.1039/C8CS00470F
    [24]
    LI X Y, ZHOU H H, WU W Q, et al. Studies of heavy metal ion adsorption on chitosan/sulfydryl-functionalized graphene oxide composites[J]. Journal of Colloid and Interface Science,2015,448:389-397. doi: 10.1016/j.jcis.2015.02.039
    [25]
    MURUGAN A V, MURALIGANT H T, MANTHIRAM A. Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage[J]. Chemistry of Materials,2009,21(21):5004-5006. doi: 10.1021/cm902413c
    [26]
    ZHAO D L, GAO X, CHEN S H, et al. Interaction between U(VI) with sulfhydryl groups functionalized graphene oxides investigated by batch and spectroscopic techniques[J]. Journal of Colloid and Interface Science,2018,524:129-138. doi: 10.1016/j.jcis.2018.04.012
    [27]
    FENG X M, HU J Q, CHEN X H, et al. Synthesis and electron transfer property of sulfhydryl-containing multi-walled carbon nanotube/gold nanoparticle heterojunctions[J]. Journal of Physics D-Applied Physics,2009,42(4):042001. doi: 10.1088/0022-3727/42/4/042001
    [28]
    GAO W, MAJUMDER M, ALEMANY L B, et al. Engineered graphite oxide materials for application in water purification[J]. ACS Applied Materials & Interfaces,2011,3(6):1821-1826.
    [29]
    谢欣, 张潇, 李蕊含, 等. 反渗透膜微结构的调控及海水脱硼性能的提升[J]. 高等学校化学学报, 2019, 40(9):2033-2040. doi: 10.7503/cjcu20190104

    XIE X, ZHANG X, LI R H, et al. Microstructure regulation of the reverse osmosis membrane to improve the boron removal performance[J]. Chemical Journal of Chinese Universities,2019,40(9):2033-2040(in Chinese). doi: 10.7503/cjcu20190104
    [30]
    KIM E S, DENG B L. Fabrication of polyamide thin-film nano-composite (PA-TFN) membrane with hydrophilized ordered mesoporous carbon (H-OMC) for water purifications[J]. Journal of Membrane Science,2011,375(1-2):46-54. doi: 10.1016/j.memsci.2011.01.041
    [31]
    宋杰, 徐子丹, 周勇, 等. 表面改性纳米二氧化钛-芳香聚酰胺复合反渗透膜的制备与表征[J]. 水处理技术, 2013, 39(6):24-28. doi: 10.3969/j.issn.1000-3770.2013.06.007

    SONG J, XU Z D, ZHOU Y, et al. Preparation and characterization of surface-modified nano-TiO2/aromatic polyamide composite reverse osmosis membranes[J]. Technology of Water Treatment,2013,39(6):24-28(in Chinese). doi: 10.3969/j.issn.1000-3770.2013.06.007
    [32]
    LIU M H, YU S C, TAO J, et al. Preparation, structure characteristics and separation properties of thin-film composite polyamide-urethane seawater reverse osmosis membrane[J]. Journal of Membrane Science,2008,325(2):947-956. doi: 10.1016/j.memsci.2008.09.033
    [33]
    YU S C, LIU M H, LUE Z H, et al. Aromatic-cycloaliphatic polyamide thin-film composite membrane with improved chlorine resistance prepared from m-phenylenediamine-4-methyl and cyclohexane-1, 3, 5-tricarbonyl chloride[J]. Journal of Membrane Science,2009,344(1-2):155-164. doi: 10.1016/j.memsci.2009.07.046
    [34]
    YAN W T, SHI M Q, WANG Z, et al. Confined growth of skin layer for high performance reverse osmosis membrane[J]. Journal of Membrane Science,2019,585:208-217. doi: 10.1016/j.memsci.2019.05.033
    [35]
    XU J, YAN H, ZHANG Y, et al. The morphology of fully-aromatic polyamide separation layer and its relationship with separation performance of TFC membranes[J]. Journal of Membrane Science,2017,541:174-188. doi: 10.1016/j.memsci.2017.06.057
    [36]
    YIN C, ZHANG Y J, CHEN Z, et al. Correlation between the pore resistance and water flux of the cellulose acetate membrane[J]. Environmental Science-Water Research & Technology,2017,3(6):1037-1041.
    [37]
    WANG X, FANG D F, HSIAO B S, et al. Nanofiltration membranes based on thin-film nanofibrous composites[J]. Journal of Membrane Science,2014,469:188-197. doi: 10.1016/j.memsci.2014.06.049
    [38]
    FORNASIERO F, PARK H G, HOLT J K, et al. Ion exclusion by sub-2-nm carbon nanotube pores[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(45):17250-17255. doi: 10.1073/pnas.0710437105
    [39]
    HOLT J K, PARK H G, WANG Y M, et al. Fast mass transport through sub-2-nanometer carbon nanotubes[J]. Science,2006,312(5776):1034-1037. doi: 10.1126/science.1126298
    [40]
    LI L X, LEE R. Purification of produced water by ceramic membranes: material screening, process design and economics[J]. Separation Science and Technology,2009,44(15):3455-3484. doi: 10.1080/01496390903253395
    [41]
    WANG X Y, LI Q Q, ZHANG J F, et al. Novel thin-film reverse osmosis membrane with MXene Ti3C2Tx embedded in polyamide to enhance the water flux, anti-fouling and chlorine resistance for water desalination[J]. Jounal of Membrane Science,2020,603:118036. doi: 10.1016/j.memsci.2020.118036
    [42]
    DAVID C T, GROSSMAN J C. Water desalination across nanoporous graphene[J]. Nano Letters,2012,12(7):3602-3608. doi: 10.1021/nl3012853
    [43]
    GEISE G M, PAUL D R, FREEMAN B D. Fundamental water and salt transport properties of polymeric materials[J]. Progress in Polymer Science,2014,39(1):1-42. doi: 10.1016/j.progpolymsci.2013.07.001
    [44]
    ROH I J, GREENBERG A R, KHARE V P. Synthesis and characterization of interfacially polymerized polyamide thin films[J]. Desalination,2006,191(1-3):279-290. doi: 10.1016/j.desal.2006.03.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (1444) PDF downloads(90) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return