Volume 38 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
ZHAO Zehua, SUN Jinsong, GUO Ying, et al. Improving interlaminar toughness of carbon fiber/ phthalonitrile composite via polyimide[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 732-740. doi: 10.13801/j.cnki.fhclxb.20201030.004
Citation: ZHAO Zehua, SUN Jinsong, GUO Ying, et al. Improving interlaminar toughness of carbon fiber/ phthalonitrile composite via polyimide[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 732-740. doi: 10.13801/j.cnki.fhclxb.20201030.004

Improving interlaminar toughness of carbon fiber/ phthalonitrile composite via polyimide

doi: 10.13801/j.cnki.fhclxb.20201030.004
  • Received Date: 2020-07-05
  • Accepted Date: 2020-10-18
  • Available Online: 2020-10-30
  • Publish Date: 2021-03-15
  • Phthalonitrile resin is a new type of high performance thermosetting resin with excellent mechanical properties and high temperature resistance. In this paper, thermal plastic polyimide (PI) particles were used to improve the mechanical properties of the composites. It shows that the glass transition temperature of the composite decreases with the addition of PI. The introduction of PI can significantly improve the toughness of the composite. The interlaminar shear strength of the composite modified by 10wt% PI is increased by 41.2%, and the mode I interlaminar fracture toughness of the composite modified by 15wt% PI is increased by 156.3%. The presence of particles can be clearly observed between layers of composites. When the mass fraction of PI is further increased, particles will agglomerate, leading to the decrease of interlaminar shear strength of composite materials. In addition, the shear strength of PI toughened phthalic resin composite at 380℃ is similar to that of the unmodified composite, and the PI particle content at this temperature is no longer the main factor affecting the toughness of composites.

     

  • loading
  • [1]
    李洪峰, 曲春艳, 王德志. 耐高温双邻苯二甲腈树脂研究进展[J]. 黑龙江科学, 2013(1):30-32. doi: 10.3969/j.issn.1674-8646.2013.01.017

    LI Hongfeng, QU Chunyan, WANG Dezhi. Research progress of high temperature resistant bisphthalonitrile resin[J]. Heilongjiang Science,2013(1):30-32(in Chinese). doi: 10.3969/j.issn.1674-8646.2013.01.017
    [2]
    刘锋, 周恒, 赵彤. 高性能树脂基体的最新研究进展[J]. 宇航材料工艺, 2012, 42(4):1-6. doi: 10.3969/j.issn.1007-2330.2012.04.001

    LIU Feng, ZHOU Heng, ZHAO Tong. The latest research progress of high performance resin matrix[J]. Aerospace Materials & Technology,2012,42(4):1-6(in Chinese). doi: 10.3969/j.issn.1007-2330.2012.04.001
    [3]
    SASTRI S B, ARMISTEAD J P, KELLER T M. Phthalonitrile-carbon fiber composites[J]. Polymer Composites,1996,17(6):816-822. doi: 10.1002/pc.10674
    [4]
    DZHEVAKOV P B, KOROTKOV R F, BULGAKOV B A, et al. Synthesis and polymerization of disiloxane Si—O—Si-linked phthalonitrile monomer[J]. Mendeleev Communications,2016,26(6):527-529. doi: 10.1016/j.mencom.2016.11.023
    [5]
    DAYO A Q, CAO X M, CAI W A, et al. Synthesis of benzophenone-center bisphenol-A containing phthalonitrile monomer (BBaph) and its copolymerization with P-a benzoxazine[J]. Reactive and Functional Polymers,2018,129:46-52.
    [6]
    CHEN L, REN D X, CHEN S J, et al. Copolymerization of phthalonitrile-based resin containing benzoxazine and cyanate ester: Curing behaviors, fiber-reinforced composite laminates and improved properties[J]. eXPRESS Polymer Letters, 2019, 13(5): 456–468.
    [7]
    WANG G X, HAN Y, GUO Y, et al. Phthalonitrile terminated fluorene based copolymer with outstanding thermal and mechanical properties[J]. European Polymer Journal, 2019, 113: 1–11.
    [8]
    BELSKY K S, SULIMOV A V, BULGAKOV B A, et al. Hydrolysis rate constants and activation parameters for phosphate- and phosphonate-bridged phthalonitrile monomers under acid, neutral and alkali conditions[J]. Data in Brief,2017,13:10-17. doi: 10.1016/j.dib.2017.05.015
    [9]
    雷雅杰, 赵睿, 杨小莉, 等. 聚芳醚腈改性双邻苯二甲腈树脂及其玻纤复合材料制备[J]. 塑料工业, 2010, 38(8):22-24.

    LEI Yajie, ZHAO Rui, YANG Xiaoli, et al. Preparation of polyarylene ether nitrile modified bisphthalonitrile resin and its glass fiber composite material[J]. China Plastics Industry,2010,38(8):22-24(in Chinese).
    [10]
    YANG X Y, LI K, XU M Z, et al. Designing a phthalonitrile/benzoxazine blend for the advanced GFRP composite materials[J]. Chinese Journal of Polymer Science,2018,36(1):106-112. doi: 10.1007/s10118-018-2033-y
    [11]
    ERKLIĞ A, BULUT M, FAYZULLA B. Toughening effect of microscale particles on the tensile and vibration properties of S-glass-fiber-reinforced epoxy composites[J]. Mechanics of Composite Materials,2018,54(1):119-128. doi: 10.1007/s11029-018-9724-x
    [12]
    ZHANG Q, GUAN Q, YUAN L, et al. A very low concentration of polybenzimidazole film interleaved bismaleimide/diallyl bisphenol a system with outstanding improvement in impact strength and excellent allround properties[J]. Polymer Composites,2018,39(12):4569-4580.
    [13]
    DEL SAZ-OROZCO B, RAY D, STANLEY W F. Effect of thermoplastic veils on interlaminar fracture toughness of a glass fiber/vinyl ester composite[J]. Polymer Composites,2017,38(11):2501-2508.
    [14]
    WU N, YANG J, ZHENG S S, et al. Improvement of interlaminar fracture toughness in glass fiber reinforced plastic laminates with inorganic nanofiber sheet interleaf[J]. Fibers and Polymers, 2019, 20(10): 2175-2183.
    [15]
    WANG J, POZEGIC T R, XU Z, et al. Cellulose nanocrystal-polyetherimide hybrid nanofibrous interleaves for enhanced interlaminar fracture toughness of carbon fibre/epoxy composites[J]. Composites Science and Technology,2019,182:107744.
    [16]
    张兴迪, 刘刚, 党国栋, 等. 含磷聚芳醚酮颗粒层间增韧碳纤维/双马树脂RTM复合材料[J]. 高分子学报2016(9): 1254-1262.

    ZHANG Xingdi, LIU Gang, DANG Guodong, et al. Phosphorus-containing polyaryl ether ketone particles interlayer toughened carbon fiber/bimar resin RTM composite material[J]. Acta Polymerica Sinica, 2016(9): 1254-1262(in Chinese).
    [17]
    刘志真, 郭恩玉, 邢军, 等. “离位”增韧技术在碳纤维/RTM聚酰亚胺复合材料中的应用[J]. 复合材料学报, 2010, 27(6):1-8.

    LIU Zhizhen, GUO Enyu, XING Jun, et al. Application of carbon fiber/RTMable polyimide composites by ex-situ toughness method[J]. Acta Materiae Compositae Sinica,2010,27(6):1-8(in Chinese).
    [18]
    KELLER T M, DOMINGUEZ D D. High temperature resorcinol-based phthalonitrile polymer[J]. Polymer, 2005, 46(13): 4614-4618.
    [19]
    ZHOU H, BADASHAH A, LUO Z H, et al. Preparation and property comparison of ortho, meta, and para autocatalytic phthalonitrile compounds with amino group[J]. Polymers for Advanced Technologies, 2011, 22(10): 1459–1465.
    [20]
    中国国家标准化管理委员会. 定向纤维增强聚合物基复合材料弯曲性能试验方法: GB/T 3356—2014[S]. 北京: 中国标准出版社, 2015.

    Standardization Administration of the People’s Republic of China. Test method for flexural properties of orientational fiber reinforced polymer metrix composite materials: GB/T 3356—2014[S]. Beijing: China Standards Press, 2015(in Chinese).
    [21]
    中国国家标准化管理委员会. 单向纤维增强塑料层间剪切强度试验方法: GB 3357—1982[S]. 北京: 中国标准出版社, 1982.

    Standardization Administration of the People’s Republic of China. Test method for interlaminar shear strength of unidirectional fiber reinforced plastics: GB 3357—1982[S]. Beijing: China Standards Press, 1982(in Chinese).
    [22]
    ASTM International. Standard test method for mode Ⅰ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM 5528—01[S]. West Conshohocken: ASTM International, 2007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (1295) PDF downloads(104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return