Volume 38 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
LI Kan, WEI Zhiqiang, QIAO Hongxia, et al. Weibull durability life prediction method of reinforced concrete in environment of coupled salt solution[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2370-2382. doi: 10.13801/j.cnki.fhclxb.20201021.001
Citation: LI Kan, WEI Zhiqiang, QIAO Hongxia, et al. Weibull durability life prediction method of reinforced concrete in environment of coupled salt solution[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2370-2382. doi: 10.13801/j.cnki.fhclxb.20201021.001

Weibull durability life prediction method of reinforced concrete in environment of coupled salt solution

doi: 10.13801/j.cnki.fhclxb.20201021.001
  • Received Date: 2020-08-10
  • Accepted Date: 2020-10-07
  • Available Online: 2020-10-21
  • Publish Date: 2021-07-15
  • According to the service environment of the platform along Lanzhou Metro Line, coupled salt solutions containing SO42−, Cland Mg2+ were allocated. The reinforced concrete specimens were placed in a coupled salt solution for nondestructive testing every 90 days. Weibull distribution model was selected. Fixed and dynamic parameter estimates of the degradation distribution were obtained by least square method and BLUE method. The results show that the corrosion ions in coupled salt solution reach the surface of steel bar by diffusion, permeation and electrochemical migration. The pH value near the steel bar decreases, and the passivation film transits from undamaged state to partial damaged state. The polarization curve moves towards the direction of negative potential and increasing corrosion current density, and the AC impedance graph shows a double capacitive reactance arc, while the low-frequency impedance arc radius gradually decreases and contracts to the real part of the impedance. The reliability curves show three-stage variation characteristics. Among the dynamic parameter estimates, the reliability life of the cubic scale parameter is the closest to that of the fixed parameter value, the failure rate is the largest, the reliability life of the exponential scale parameter is the shortest, the failure rate is the smallest, the power type is between the two, and the dynamic parameter function must be between them. The first derivative and the value of the function must be positive. Otherwise, the result of the reliability calculation is complex. The influence of the scale parameter function form on reliability curve is greater than that of the shape parameter function form on reliability curve. When the scale parameter function type is fixed, the shape parameter function type has great influence on the life result. However, the reliability curve changes obviously with the scale parameter function type altering.

     

  • loading
  • [1]
    刘松玉, 李洪江, 童立元, 等. 城市地下结构污染腐蚀耐久性的若干问题[J]. 岩土工程学报, 2016, 38(s2):7-17.

    LIU S Y, LI H J, TONG L Y, et al. Some problems on polluted erosive durability of urban underground structures[J]. Journal of Geotechnical Engineering,2016,38(s2):7-17(in Chinese).
    [2]
    陈晓斌, 唐孟雄, 马昆林. 地下混凝土结构硫酸盐及氯盐侵蚀的耐久性实验[J]. 中南大学学报(自然科学版), 2012, 43(7):2803-2812.

    CHEN X B, TANG M X, MA K L. Underground concrete structure exposure tosulfate and chloride invading environment[J]. Journal of Central South University (Natural Science Edition),2012,43(7):2803-2812(in Chinese).
    [3]
    CUI Z, ALIPOUR A. Concrete cover cracking and service life prediction of reinforced concrete structures in corrosive environments[J]. Construction and Building Materials,2018,159:652-671. doi: 10.1016/j.conbuildmat.2017.03.224
    [4]
    DUAN A, DAI J, JIN W. Probabilistic approach for durability design of concrete structures in marine environments[J]. Cement and Concrete Research,2015,27(2):A4014007.
    [5]
    MITSUYOSHI A, DAN M, FRANGOR P, et al. Reliability-based durability design and service life assessment of reinforced concrete deck slab of jetty structures[J]. Structure and Infrastructure Engineering,2017,13(4):468-477. doi: 10.1080/15732479.2016.1164725
    [6]
    金伟良, 钟小平. 结构全寿命的耐久性与安全性、适用性的关系[J]. 建筑结构学报, 2009, 30(6):1-7.

    JIN W L, ZHONG X P. Relationship of structural durability with structural safety and serviceability in whole life cycle[J]. Journal of Architectural Structure,2009,30(6):1-7(in Chinese).
    [7]
    潘洪科, 牛季收, 杨林德, 等. 地下工程砼结构基于碳化作用的耐久性劣化模型[J]. 工程力学, 2008, 25(7):172-178.

    PAN H K, NIU J S, YANG L D, et al. The durability deterioration model based on carbonation for underground concrete structures[J]. Engineering Mechanics,2008,25(7):172-178(in Chinese).
    [8]
    潘洪科, 边亚东, 杨林德. 钢筋混凝土结构基于耐久性劣化度的可靠性分析[J]. 建筑结构学报, 2011, 32(1):105-109.

    PAN H K, BIAN Y D, YANG L D. Reliability analysis of reinforced concrete structure based on durability and deterioration grade[J]. Journal of Building Structure,2011,32(1):105-109(in Chinese).
    [9]
    LIM S, AKIYAMA M, FRANGOPOL D M, et al. Assessment of the structural performance of corrosion-affected RC members based on experimental study and probabilistic modeling[J]. Engineering Structures,2016,127:189-205.
    [10]
    ZHANG M, SONG H, LIM S, et al. Reliability estimation of corroded RC structures based on spatial variability using experimental evidence, probabilistic analysis and finite element method[J]. Engineering Structures,2019,192:30-52.
    [11]
    刘海, 姚继涛, 牛荻涛. 钢筋混凝土结构基于锈胀开裂寿命准则的耐久性设计方法[J]. 西安建筑科技大学学报(自然科学版), 2009, 41(1):25-31.

    LIU H, YAO J T, NIU D T. Durability design of RC structures based on the life criterion of cover cracking[J]. Journal of Xi’an University of Architecture and Technology (Natural Science Edition),2009,41(1):25-31(in Chinese).
    [12]
    王显利, 郑建军. 钢筋混凝土结构锈胀开裂及裂缝扩展试验研究[J]. 大连理工大学学报, 2009, 49(2):246-253.

    WANG X L, ZHENG J J. Experimental study of corrosion-induced crack initiation and propagation of reinforced concrete structures[J]. Journal of Dalian University of Technology,2009,49(2):246-253(in Chinese).
    [13]
    唐孟雄, 陈晓斌. 基于扩孔理论的混凝土钢筋锈胀开裂分析[J]. 中南大学学报(自然科学版), 2010, 41(3):1172-1177.

    TANG M X, CHEN X B. Analysis of rebar rust cover cracking in reinforced concrete with cylindrical cavity expansion theory[J]. Journal of Central South University (Natural Science Edition),2010,41(3):1172-1177(in Chinese).
    [14]
    毛江鸿, 金伟良, 李志远, 等. 氯盐侵蚀钢筋混凝土桥梁耐久性提升及寿命预测[J]. 中国公路学报, 2016, 29(1):61-66. doi: 10.3969/j.issn.1001-7372.2016.01.008

    MAO J H, JIN W L, LI Z Y, et al. Durability improvement and service life prediction of reinforced concrete bridge under chloride attack[J]. Journal of China Highway,2016,29(1):61-66(in Chinese). doi: 10.3969/j.issn.1001-7372.2016.01.008
    [15]
    陈梦成, 袁素叶. 多重因素下混凝土氯离子扩散CA模型及寿命预测[J]. 铁道建筑, 2016(9):134-138. doi: 10.3969/j.issn.1003-1995.2016.09.34

    CHEN M C, YUAN S Y. Cellular automata model chloride ions diffusion in concrete influenced by multi-factors and life prediction of concrete[J]. Railway construction,2016(9):134-138(in Chinese). doi: 10.3969/j.issn.1003-1995.2016.09.34
    [16]
    关博文, 杨涛, 於德美, 等. 干湿循环作用下钢筋混凝土氯离子侵蚀与寿命预测[J]. 材料导报, 2016, 30(20):152-157.

    GUAN B W, YANG T, YU D M, et al. Chloride erosion life prediction of steel reinforced concrete under dry and wet cycles[J]. Materials Reports,2016,30(20):152-157(in Chinese).
    [17]
    GHAVIJORBOZEH R, HAMADANI A Z. Application of the mixed Weibull distribution in machine reliability analysis for a cell formation problem[J]. International Journal of Quality & Reliability Management,2017,34(1):128-142.
    [18]
    LOWE P, LEWIS W. Reliability analysis based on the Weibull distribution: An application to maintenance float factors[J]. International Journal of Production Research,1983,21(4):461-470. doi: 10.1080/00207548308942382
    [19]
    中华人民共和国住房和城乡建设部. 混凝土耐久性设计标准: GB/T 50476—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development People’s Republic of China. Standard for design of concrete structure durability: GB/T 50476—2019[S], Beijing: China Building Industry Press, 2019(in Chinese).
    [20]
    朱彬荣. 基于概率方法的西部地区混凝土结构材料服役寿命预测[D]. 兰州: 兰州理工大学, 2017.

    ZHU B R. Service life prediction for concrete structure materials in western region of China based on probabilistic method[D]. Lanzhou: Lanzhou University of Technology, 2017(in Chinese).
    [21]
    李岩, 蔡跃波, 葛燕, 等. 用交流阻抗谱研究活性砂浆胶结材料的电化学行为[J]. 硅酸盐学报, 2013, 41(2):199-204.

    LI Y, CAI Y B, GE Y, et al. Electrochemical performance of active mortar cementitious materials via AC impedance spectroscopy[J]. Bulletin of the Chinese Ceramic Society,2013,41(2):199-204(in Chinese).
    [22]
    乔国富. 混凝土结构钢筋腐蚀的电化学特征与监测传感器系统[D]. 哈尔滨: 哈尔滨工业大学, 2008.

    QIAO G F. Electrochemical characteristics and monitoring sensor system of the corrosion of the steel bar in concrete structure[D]. Harbin: Harbin Institute of Technology, 2008(in Chinese).
    [23]
    ERDOGDU S, BREMNER T W, KONDRATOVA I L. Accelerated testing of plain and epoxy-coated reinforcement in simulated seawater and chloride solutions[J]. Cement and Concrete Research,2001,31(6):861-867. doi: 10.1016/S0008-8846(01)00487-2
    [24]
    ASTM International. Standard test method for corrosion potentials of uncoated reinforcing steel in concrete: ASTM C876—15[S]. West Conshohocken: ASTM International, 2015.
    [25]
    郭飞, 费庆国, 李彦斌, 等. 基于Weibull模型的C/C复合材料销钉剪切强度分布及本构关系[J]. 复合材料学报, 2019, 36(2):461-468.

    GUO F, FEI Q G, LI Y B, et al. Shear strength distribution and constitutive model of C/C composite on Weibull model[J]. Acta Materiae Compositae Sinica,2019,36(2):461-468(in Chinese).
    [26]
    韩旭旭, 张程煜, 陈博, 等. 2D-SiCf/SiC复合材料抗拉强度统计分布规律[J]. 复合材料学报, 2019, 36(2):434-440.

    HAN X X, ZHANG C Y, CHEN B, et al. Statistical distribution of tensile strength of a 2D-SiCf/SiC composite[J]. Acta Materiae Compositae Sinica,2019,36(2):434-440(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(5)

    Article Metrics

    Article views (873) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return