Volume 38 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
WANG Wei, LI Tao, TAO Lulu, et al. Preparation and properties of amorphous cobalt boride alloy-reduced graphene/ cotton fabric flexible electrode composite[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2265-2273. doi: 10.13801/j.cnki.fhclxb.20201014.001
Citation: WANG Wei, LI Tao, TAO Lulu, et al. Preparation and properties of amorphous cobalt boride alloy-reduced graphene/ cotton fabric flexible electrode composite[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2265-2273. doi: 10.13801/j.cnki.fhclxb.20201014.001

Preparation and properties of amorphous cobalt boride alloy-reduced graphene/ cotton fabric flexible electrode composite

doi: 10.13801/j.cnki.fhclxb.20201014.001
  • Received Date: 2020-08-06
  • Accepted Date: 2020-10-10
  • Available Online: 2020-10-14
  • Publish Date: 2021-07-15
  • Amorphous cobalt boride alloy-reduced graphene (CoB-RGO)/cotton fabric flexible composite electrodes were prepared by impregnation-drying method and chemical reduction method at room temperature and atmospheric pressure. The effects of Co2+ concentrations on the structural morphology and electrochemical properties of CoB-RGO/cotton fabric flexible composite electrodes were studied. The results show that amorphous CoB presents an open 3D sheet structure interlaced with each other when the concentration of Co2+ is 0.14 mol/L. Compared with amorphous CoB/fabric and RGO/fabric composite electrodes, amorphous CoB-RGO/fabric composite electrodes show the better electrochemical properties. With the current density of 0.25 mA/cm2, the specific capacitance of amorphous CoB-RGO/cotton fabric composite electrodes is up to 218.8 F/g. There is no obvious effect of folding times and folding angles on the electrochemical performance of CoB-RGO/cotton fabric composite electrodes, which indicates their good flexibility.

     

  • loading
  • [1]
    LIU Z X , MO F N, LI H F, et al. Advances in flexible and wearable energy-storage textiles[J]. Small Methods,2018,2(11):1800124.
    [2]
    WANG B H, FACCHETTI A. Mechanically flexible conductors for stretchable and wearable E-skin and E-textile device[J]. Advance Material,2019,31(28):1901408.
    [3]
    ZHANG T Y, LI X, ASHER E, et al. Paper with power: Engraving 2D materials on 3D structures for printed, high-performance, binder-free, and all-solid-state supercapacitors[J]. Advanced Functional Materials,2018,28(37):1803600.
    [4]
    ZHU Y H, YUAN S, BAO D, et al. Decorating waste cloth via industrial wastewater for tube-type flexible and wearable sodium-ion batteries[J]. Advanced Materials,2017,29(16):1603719.
    [5]
    LI Y Z, ZHANG Y F, ZHANG H R, et al. A facile approach to prepare a flexible sandwichstructured supercapacitor with rGO-coated cotton fabric as electrodes[J]. RSC Advances,2019,9(8):4180-4189. doi: 10.1039/C9RA00171A
    [6]
    GOPI C V V M, VINODH R, SAMBASIVAM S, et al. Recent progress of advanced energy storage materials for flexible and wearable supercapacitor: From design and development to applications[J]. Journal of Energy Storage,2020,27:101035. doi: 10.1016/j.est.2019.101035
    [7]
    TEBYETEKERWA M, MARRIAM I, XU Z, et al. Critical insight: Challenges and requirements of fibre electrodes for wearable electrochemical energy storage[J]. Energy & Environmental Science,2019,12(7):2148-2160.
    [8]
    SHAO F, HU N T, SU Y J, et al. Non-woven fabric electrodes based on graphene-based fibers for areal-energy-dense flexible solid-state supercapacitors[J]. Chemical Engineering Journal,2020,392:123692. doi: 10.1016/j.cej.2019.123692
    [9]
    TENG W L, ZHOU Q Q, WANG X K, et al. Hierarchically interconnected conducting polymer hybrid fiber with high specific capacitance for flexible fiber-shaped supercapacitor[J]. Chemical Engineering Journal,2020,390:122569.
    [10]
    DUBAL D P, CHODANKAR N R, KIM D, et al. Towards flexible solid-state supercapacitors for smart and wearable electronics[J]. Chemical Society Review,2018,47(6):2065-2129. doi: 10.1039/C7CS00505A
    [11]
    MAILE N, SHINDE S K, PATIL S S, et al. Capacitive property studies of electrochemically synthesized Co3O4 and Mn3O4 on inexpensive stainless steel current collector for supercapacitor application[J]. Ceramics International,2020,46(10):14640-14649. doi: 10.1016/j.ceramint.2020.02.265
    [12]
    LIN R, ZHU Z H, YU X, et al. Facile synthesis of TiO2/Mn3O4 hierarchical structures for fiber-shaped flexible asymmetric supercapacitors with ultrahigh stability and tailorable performance[J]. Journal of Materials Chemistry A,2020,5(2):814-821.
    [13]
    KIRANSAN K D, TOPCU E. SnS2-gC3N4/rGO composite paper as an electrode for high-performance flexible symmetric supercapacitors[J]. Synthetic Metals,2020,264:116390. doi: 10.1016/j.synthmet.2020.116390
    [14]
    WANG T, CHEN H C, YU F, et al. Boosting the cycling stability of transition metal compounds-based supercapacitors[J]. Energy Storage Materials,2019,16:545-573. doi: 10.1016/j.ensm.2018.09.007
    [15]
    CHEN H C, QIN Y L, CAO H J, et al. Synthesis of amorphous nickel-cobalt-manganese hydroxides for supercapacitor-battery hybrid energy storage system[J]. Energy Storage Materials,2019,17:194-203. doi: 10.1016/j.ensm.2018.07.018
    [16]
    CHEN H Y, OUYANG S X, ZHAO M, et al. The synergistic activity of Co and Fe in amorphous Cox-Fe-B catalyst for efficient oxygen evolution reaction[J]. ACS Applied Materials & Interfaces,2017,9(46):40333-40343.
    [17]
    LI H B, YU M H, WANG F X, et al. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials[J]. Nature Communications,2013,4:1894.
    [18]
    WANG S, HE P, XIE Z W, et al. Tunable nanocotton-like amorphous ternary Ni-Co-B: A highly efficient catalyst for enhanced oxygen evolution reaction[J]. Electrochimica Acta,2019,296:644-652. doi: 10.1016/j.electacta.2018.11.099
    [19]
    LI Q, XU Y X, ZHENG S S, et al. Recent progress in some amorphous materials for supercapacitors[J]. Small,2018,14(28):1800426.
    [20]
    WANG H, MA Y, WANG R, et al. Liquid-liquid interface-mediated room-temperature synthesis of amorphous NiCo pompoms fromultrathin nanosheets with high catalytic activity for hydrazine oxidation[J]. Chemical Communications,2015,51(17):3570-3573. doi: 10.1039/C4CC09928A
    [21]
    QIN W, LIU Y, LIU X Y, et al. Facile scalable production of amorphous nickel borate for high performance hybrid supercapacitors[J]. Journal of Materials Chemistry A,2018,6(40):19689-19695. doi: 10.1039/C8TA07385F
    [22]
    MENG Q Z, XU W, ZHU S L, et al. Low-cost fabrication of amorphous cobalt-iron-boron nanosheets for high performance asymmetric supercapacitors[J]. Electrochimica Acta,2019,296:198-205. doi: 10.1016/j.electacta.2018.11.067
    [23]
    CHEN R N, LIU L, ZHOU J S, et al. High-performance nickel-cobalt-boron material for an asymmetric supercapacitor with an ultrahigh energy density[J]. Journal of Power Sources,2017,341:75-82. doi: 10.1016/j.jpowsour.2016.11.108
    [24]
    WANG W, LI T, SUN Y Y, et al. Facile and mild method to fabricate a flexible cellulose based electrode with reduced graphene and amorphous cobalt-iron-boron alloy for wearable electronics[J]. Cellulose,2020,27:7079-7092. doi: 10.1007/s10570-020-03269-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (827) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return