Volume 38 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
ZUO Shixiang, CAO Xiaoman, WU Hongye, et al. Preparation of g-C3N4 quantum dot-TiO2/conductive attapulgite composites and their photocatalytic performance[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2706-2714. doi: 10.13801/j.cnki.fhclxb.20201011.003
Citation: ZUO Shixiang, CAO Xiaoman, WU Hongye, et al. Preparation of g-C3N4 quantum dot-TiO2/conductive attapulgite composites and their photocatalytic performance[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2706-2714. doi: 10.13801/j.cnki.fhclxb.20201011.003

Preparation of g-C3N4 quantum dot-TiO2/conductive attapulgite composites and their photocatalytic performance

doi: 10.13801/j.cnki.fhclxb.20201011.003
Funds:  Key R & D Programs of Jiangsu Province (BE2018649); Natural Science Research Program of Huaian City (HAB201952); National Science Foundation of China (51702026)
  • Received Date: 2020-08-17
  • Accepted Date: 2020-09-24
  • Available Online: 2020-10-12
  • Publish Date: 2021-08-15
  • TiO2/C-ATP composites consisting of palmerworm-like TiO2 nanorods in-situ growth on the surface of conductive attapulgite (C-ATP) were constructed via a hydrothermal approach. Then TiO2/C-ATP was used as the carrier to uniformly load carbon nitride quantum dots (CNQD) to successfully prepare hierarchical CNQD-TiO2/C-ATP heterojunction photocatalysts. The obtained samples were characterized by XRD, FTIR, SEM/TEM, ultraviolet-visible (UV-Vis-DRS), photoluminescence (PL), Brunauer-emmett-teller (BET) specific area analyzer and photoelectrochemistry. The degradation ability of the sample to tetracycline hydrochloride (TC) was investigated under visible light. The results show that CNQD-TiO2/C-ATP composites dramatically enhance the visible light response, the absorption capacity and the separation of photogenerated electron-hole pairs compared to TiO2/C-ATP and CNQD. After 120 min irradiation, the degradation rate of CNQD-TiO2/C-ATP to remove TC can achieve 88%.

     

  • loading
  • [1]
    LWIN H M, ZHAN W Q, SONG S X, et al. Visible-light photocatalytic degradation pathway of tetracycline hydrochloride with cubic structured ZnO/SnO2 heterojunction nanocatalyst[J]. Chemical Physics Letters,2019,736:136806. doi: 10.1016/j.cplett.2019.136806
    [2]
    CAO Y, LEI X Y, CHEN Q L, et al. Enhanced photocatalytic degradation of tetracycline hydrochloride by novel porous hollow cube ZnFe2O4[J]. Journal of Photochemistry and Photobiology A: Chemistry,2018,364:794-800. doi: 10.1016/j.jphotochem.2018.07.023
    [3]
    MA X, CHEN K Y, NIU B, et al. Preparation of BiOCl0.9I0.1/β-Bi2O3 composite for degradation of tetracycline hydrochloride under simulated sunlight[J]. Chinese Journal of Catalysis,2020,41(10):1535-1543. doi: 10.1016/S1872-2067(19)63486-8
    [4]
    VIGNESH K, MATHEW S, BARTLETT J, et al. Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances[J]. Applied Catalysis B: Environmental,2019,244:1021-1064. doi: 10.1016/j.apcatb.2018.11.080
    [5]
    GUO Y, GUO T, CHEN J H, et al. Synthesis of C-N-S co-doped TiO2 mischcrystal with an isobandgap characteristic and its photocatalytic activity under visible light[J]. Catalysis Science & Technology,2018,8(16):4108-4121.
    [6]
    WANG Q, QIAO Z, JIANG P, et al. Hydrothermal synthesis and enhanced photocatalytic activity of mixed-phase TiO2 powders with controllable anatase/rutile ratio[J]. Solid State Sciences,2018,77:14-19. doi: 10.1016/j.solidstatesciences.2018.01.003
    [7]
    WU J, MA X J, XU L M, et al. Fluorination promoted photoinduced modulation of Pt clusters on oxygen vacancy enriched TiO2/Pt photocatalyst for superior photocatalytic performance[J]. Applied Surface Science,2019,489:510-518. doi: 10.1016/j.apsusc.2019.05.304
    [8]
    WANG C, CAO M H, WANG P F, et al. Preparation of graphene-carbon nanotube-TiO2 composites with enhanced photocatalytic activity for the removal of dye and Cr (VI)[J]. Applied Catalysis A-General,2014,473:83-89. doi: 10.1016/j.apcata.2013.12.028
    [9]
    LI B, CHEN X G, ZHANG T Y, et al. Photocatalytic selective hydroxylation of phenol to dihydroxybenzene by BiOI/TiO2 p-n heterojunction photocatalysts for enhanced photocatalytic activity[J]. Applied Surface Science,2018,439:1047-1056. doi: 10.1016/j.apsusc.2017.12.220
    [10]
    LIU J J, CHENG B, Yu JG. A new understanding of the photocatalytic mechanism of the direct Z-scheme g-C3N4/TiO2 heterostructure[J]. Physical Chemistry Chemical Physics,2016,18(45):31175-31183. doi: 10.1039/C6CP06147H
    [11]
    GUO Y R, XIAO L M, ZHANG M, et al. An oxygen-vacancy-rich Z-scheme g-C3N4/Pd/TiO2 heterostructure for enhanced visible light photocatalytic performance[J]. Applied Surface Science,2018,440:432-439. doi: 10.1016/j.apsusc.2018.01.144
    [12]
    LIN X, LIU C, WANG J B, et al. Graphitic carbon nitride quantum dots and nitrogen-doped carbon quantum dots co-decorated with BiVO4 microspheres: A ternary heterostructure photocatalyst for water purification[J]. Separation and Purification Technology,2019,226:117-127. doi: 10.1016/j.seppur.2019.05.093
    [13]
    JIANG G D, LIN Z F, ZHU L H. Preparation and photoelectrocatalytic properties of titania/carbon nanotube compo-site films[J]. Carbon,2010,48(12):3369-3375. doi: 10.1016/j.carbon.2010.05.029
    [14]
    LI Y Y, WANG J G, SUN H H, et al. Heterostructured SnS2/SnO2 nanotubes with enhanced charge separation and excellent photocatalytic hydrogen production[J]. International Journal of Hydrogen Energy,2018,43(31):14121-14129. doi: 10.1016/j.ijhydene.2018.05.130
    [15]
    YU Y T, WANG C Q, JIANG C, et al. Resistive switching behavior in memristors with TiO2 nanorod arrays of different dimensions[J]. Applied Surface Science,2019,485:222-229. doi: 10.1016/j.apsusc.2019.04.119
    [16]
    SU J Y, ZHU L, CHEN G H. Ultrasmall graphitic carbon nitride quantum dots decorated self-organized TiO2 nanotube arrays with highly efficient photoelectrochemical activity[J]. Applied Catalysis B: Environmental,2016,186:127-135. doi: 10.1016/j.apcatb.2015.12.050
    [17]
    LIU L, QI Y H, HU J S, et al. Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core@shell Cu2O@g-C3N4 octahedra[J]. Applied Surface Science,2015,351:1146-1154. doi: 10.1016/j.apsusc.2015.06.119
    [18]
    YADAV P, NISHANTHI S, PUROHIT B, et al. Metal-free visible light photocatalytic carbon nitride quantum dots as efficient antibacterial agents: An insight study[J]. Carbon,2019,152:587-597. doi: 10.1016/j.carbon.2019.06.045
    [19]
    WANG H, LIANG Y H, LIU L, et al. Highly ordered TiO2 nanotube arrays wrapped with g-C3N4 nanoparticles for efficient charge separation and increased photoelectrocatalytic degradation of phenol[J]. Journal of Hazardous Materials,2018,344:369-380. doi: 10.1016/j.jhazmat.2017.10.044
    [20]
    ZUO S X, YAO C, LIU W J, et al. Preparation of Ureido-palygorskite and its effect on the properties of urea-formaldehyde resin[J]. Applied Clay Science,2013,80-81:133-139. doi: 10.1016/j.clay.2013.06.031
    [21]
    LIANG Z, HOU H L, FANG Z, et al. Hydrogenated TiO2 nanorod arrays decorated with carbon quantum dots toward efficient photoelectrochemical water splitting[J]. ACS Applied Materials & Interfaces,2019,11(21):19167-19175.
    [22]
    LIN X, XU D, ZHAO R, et al. Highly efficient photocatalytic activity of g-C3N4 quantum dots (CNQDs)/Ag/Bi2MoO6 nanoheterostructure under visible light[J]. Separation and Purification Technology,2017,178:163-168. doi: 10.1016/j.seppur.2017.01.020
    [23]
    SU J Y, ZHU L, GENG P, et al. Self-assembly graphitic carbon nitride quantum dots anchored on TiO2 nanotube arrays: An efficient heterojunction or pollutants degradation under solar light[J]. Journal of Hazardous Materials,2016,316:159-168. doi: 10.1016/j.jhazmat.2016.05.004
    [24]
    WANG Y P, LI YK, ZHAO J L, et al. g-C3N4/B doped g-C3N4 quantum dots heterojunction photocatalysts for hydrogen evolution under visible light[J]. International Journal of Hydrogen Energy,2019,44(2):618-628. doi: 10.1016/j.ijhydene.2018.11.067
    [25]
    YIN S, CHEN Y, HU Q S, et al. In-situ preparation of iron(II) phthalocyanine modified bismuth oxybromide with enhanced visible-light photocatalytic activity and mechanism insight[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2019,575:339-345.
    [26]
    ZHANG Y G, WU M Y, KWORK Y, et al. In-situ synthesis of heterojunction TiO2/MnO2 nanostructure with excellent performance in vacuum ultraviolet photocatalytic oxidation of toluene[J]. Applied Catalysis B: Environmental,2019,259(15):118034.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (1502) PDF downloads(89) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return