Volume 38 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
HUANG Cuiping, LI Shanshan, QI Tianle, et al. Preparation and electrochemical performance of Au-Pt nanoparticles/graphene-cellulose microfiber composite electrodes[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2274-2283. doi: 10.13801/j.cnki.fhclxb.20200928.005
Citation: HUANG Cuiping, LI Shanshan, QI Tianle, et al. Preparation and electrochemical performance of Au-Pt nanoparticles/graphene-cellulose microfiber composite electrodes[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2274-2283. doi: 10.13801/j.cnki.fhclxb.20200928.005

Preparation and electrochemical performance of Au-Pt nanoparticles/graphene-cellulose microfiber composite electrodes

doi: 10.13801/j.cnki.fhclxb.20200928.005
  • Received Date: 2020-08-20
  • Accepted Date: 2020-09-21
  • Available Online: 2020-09-29
  • Publish Date: 2021-07-15
  • The graphene and metal nano-materials are excellent conductive nanomaterials. In order to construct an electrochemical sensing interface with high-efficiency active surface area, glassy carbon electrode was used as a conductive substrate, and Au-Pt nano particles/reduced graphene oxide-cellulose microfiber (Au-Pt NPs/RGO-CMF) composites were successfully prepared by drip coating combined with one-step electrodeposition. The SEM, atomic force microscopy (AFM), EDS and Raman spectroscopy analysis show that Au-Pt nanoparticles are uniformly distributed on the thin layer of RGO-CMF, and at the same time, graphene oxide (GO) reduce to RGO. Using potassium ferricyanide as a redox probe to study the electrochemical properties of the interface, under optimized experimental conditions (cyclic voltammetry electrodeposition: Potential is −1.2-0 V, period is 20, electrolyte pH value is 6, drops coated GO-CMF volume is 8 μL), the high-efficiency active surface area of Au-Pt NPs/RGO-CMF composites (3.54 cm2) is much better than that of bare glassy carbon electrode (1.52 cm2). It shows that the constructed interface has high electrocatalytic activity, which provides theoretical support for the further application of the sensor.

     

  • loading
  • [1]
    ABERGEL D S L, APALKOV V, BERASHEVICH J, et al. Properties of graphene: a theoretical perspective[J]. Advances in Physics,2010,59(4):261-482. doi: 10.1080/00018732.2010.487978
    [2]
    BAI X, ZHANG B, LIU M, et al. Molecularly imprinted electrochemical sensor based on polypyrrole/dopamine@graphene incorporated with surface molecularly imprinted polymers thin film for recognition of olaquindox[J]. Bioelectrochemistry,2019,132:107398.
    [3]
    TEZERJANI M D, BENVIDI A, DEHGHANI FIROUZABADI A, et al. Epinephrine electrochemical sensor based on a carbon paste electrode modified with hydroquinone derivative and graphene oxide nano-sheets: Simultaneous determination of epinephrine, acetaminophen and dopamine[J]. Measurement,2017,101:183-189. doi: 10.1016/j.measurement.2017.01.029
    [4]
    MARGARYAN N, KOKANYAN N, KOKANYAN E. Low-temperature synthesis and characteristics of fractal graphene layers[J]. Journal of Saudi Chemical Society,2019,23(1):13-20. doi: 10.1016/j.jscs.2018.03.004
    [5]
    FRITEA L, BĂ NICĂF, COSTEA T O, et al. A gold nanoparticles: Graphene based electrochemical sensor for sensitive determination of nitrazepam[J]. Journal of Electroanalytical Chemistry,2018,830-831:63-71. doi: 10.1016/j.jelechem.2018.10.015
    [6]
    CUI X, YANG B, ZHAO S, et al. Electrochemical sensor based on ZIF-8@dimethylglyoxime and β-cyclodextrin modified reduced graphene oxide for nickel(II) detection[J]. Sensors and Actuators B: Chemical,2020,315:128091. doi: 10.1016/j.snb.2020.128091
    [7]
    PALANISAMY S, VELUSAMY V, RAMARAJ S, et al. Facile synthesis of cellulose microfibers supported palladium nanospindles on graphene oxide for selective detection of dopamine in pharmaceutical and biological samples[J]. Materials Science and Engineering C,2019,98:256-265. doi: 10.1016/j.msec.2018.12.112
    [8]
    VELUSAMY V, PALANISAMY S, CHEN S W, et al. Novel electrochemical synthesis of cellulose microfiber entrapped reduced graphene oxide: A sensitive electrochemical assay for detection of fenitrothion organophosphorus pesticide[J]. Talanta,2019,192:471-477. doi: 10.1016/j.talanta.2018.09.055
    [9]
    DENG K, LI C, LI X, et al. Simultaneous detection of sunset yellow and tartrazine using the nanohybrid of gold nanorods decorated graphene oxide[J]. Journal of Electroanalytical Chemistry,2016,780:296-302. doi: 10.1016/j.jelechem.2016.09.040
    [10]
    LEE M H, WANG S Y, CHIANG W H, et al. Platinum nanoparticles decorated graphene nanoribbon with eco-friendly unzipping process for electrochemical sensors[J]. Journal of the Taiwan Institute of Chemical Engineers,2019,96:566-574. doi: 10.1016/j.jtice.2018.11.012
    [11]
    ESCALONA-VILLALPANDO R A, GURROLA M P, TREJO G, et al. Electrodeposition of gold on oxidized and reduced graphite surfaces and its influence on glucose oxidation[J]. Journal of Electroanalytical Chemistry,2018,816:92-98. doi: 10.1016/j.jelechem.2018.03.037
    [12]
    LIAN W, LIU S, YU J, et al. Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan-platinum nanoparticles/graphene-gold nanoparticles double nanocomposites modified electrode for detection of erythromycin[J]. Biosensors and Bioelectronics,2012,38(1):163-169. doi: 10.1016/j.bios.2012.05.017
    [13]
    LIU Y, SHE P, GONG J, et al. A novel sensor based on electrodeposited Au-Pt bimetallic nano-clusters decorated on graphene oxide (GO)-electrochemically reduced GO for sensitive detection of dopamine and uric acid[J]. Sensors and Actuators B: Chemical,2015,221:1542-1553. doi: 10.1016/j.snb.2015.07.086
    [14]
    ETEYA M M, ROUNAGHI G H, DEIMINIAT B. Fabrication of a new electrochemical sensor based on AuPt bimetallic nanoparticles decorated multi-walled carbon nanotubes for determination of diclofenac[J]. Microchemical Journal,2019,144:254-260. doi: 10.1016/j.microc.2018.09.009
    [15]
    XU Y, HUANG K, ZHU Z, et al. Effect of glassy carbon, gold, and nickel electrodes on nickel electrocrystallization in an industrial electrolyte[J]. Surface and Coatings Technology,2019,370:1-10. doi: 10.1016/j.surfcoat.2019.04.072
    [16]
    HUANG Z N, JIAO Z, TENG J, et al. A novel electrochemical sensor based on self-assembled platinum nanochains: Multi-walled carbon nanotubes-graphene nanoparticles composite for simultaneous determination of dopamine and ascorbic acid[J]. Ecotoxicology and Environmental Safety,2019,172:167-175. doi: 10.1016/j.ecoenv.2019.01.091
    [17]
    陈文博. 电化学快速检测磺胺类兽药残留研究[D]. 郑州: 河南工业大学, 2016.

    CHEN Wenbo. Study on rapid detection sulfonamides residues based on the electroanalytical method[D]. Zhengzhou: Henan University of Technology, 2016(in Chinese).
    [18]
    XU Y, ZHANG W, HUANG X, et al. Adsorptive stripping voltammetry determination of hexavalent chromium by a pyridine functionalized gold nanoparticles/three-dimensional graphene electrode[J]. Microchemical Journal,2019,149:104022. doi: 10.1016/j.microc.2019.104022
    [19]
    XU Y, ZHANG W, SHI J, et al. Electrodeposition of gold nanoparticles and reduced graphene oxide on an electrode for fast and sensitive determination of methylmercury in fish[J]. Food Chemistry,2017,237:423-430. doi: 10.1016/j.foodchem.2017.05.096
    [20]
    JIA H, DIRICAN M, ZHU J, et al. High-performance SnSb@rGO@CMF composites as anode material for sodium-ion batteries through high-speed centrifugal spinning[J]. Journal of Alloys and Compounds,2018,752:296-302. doi: 10.1016/j.jallcom.2018.04.141
    [21]
    THONGSAMRIT W, PHROMPET C, MANEESAI K, et al. Effect of grain boundary interfaces on electrochemical and thermoelectric properties of a Bi2Te3/reduced graphene oxide composites[J]. Materials Chemistry and Physics,2020,250:123196. doi: 10.1016/j.matchemphys.2020.123196
    [22]
    XU Y, GAO M, ZHANG G, et al. Electrochemically reduced graphene oxide with enhanced electrocatalytic activity toward tetracycline detection[J]. Chinese Journal of Catalysis,2015,36(11):1936-1942. doi: 10.1016/S1872-2067(15)60956-1
    [23]
    张彩云, 范丽芳, 张国娟, 等. 基于石墨烯/铂纳米粒子复合材料的电化学传感器测定对氨基苯酚[J]. 分析科学学报, 2019, 35(2):139-144.

    ZHANG Caiyun, FAN Lifang, ZHANG Guojuan, et al. An electrochemical sensor platform based on graphene/platinum nanoparticles composite for detection p-aminophenol[J]. Journal of Analytical Science,2019,35(2):139-144(in Chinese).
    [24]
    GUAN J F, HUANG Z N, ZOU J, et al. A sensitive non-enzymatic electrochemical sensor based on acicular manganese dioxide modified graphene nanosheets composite for hydrogen peroxide detection[J]. Ecotoxicology and Environmental Safety,2020,190:110123. doi: 10.1016/j.ecoenv.2019.110123
    [25]
    张吉晔, 陈福义, 闫晓红. 沉积电位对银纳米晶体生长形态的影响[J]. 贵金属, 2011, 32(2):27-31. doi: 10.3969/j.issn.1004-0676.2011.02.006

    ZHANG Jiye, CHEN Fuyi, YAN Xiaohong. Effect of the deposition potential on the nano-silver crystal growth morphology[J]. Precious Metals,2011,32(2):27-31(in Chinese). doi: 10.3969/j.issn.1004-0676.2011.02.006
    [26]
    SONG Y, MA Y, WANG Y, et al. Electrochemical deposition of gold-platinum alloy nanoparticles on an indium tin oxide electrode and their electrocatalytic applications[J]. Electrochimica Acta,2010,55(17):4909-4914. doi: 10.1016/j.electacta.2010.03.089
    [27]
    MARRANI A G, MOTTA A, SCHREBLER R, et al. Insights from experiment and theory into the electrochemical reduction mechanism of graphene oxide[J]. Electrochimica Acta,2019,304:231-238. doi: 10.1016/j.electacta.2019.02.108
    [28]
    GUO H, SU Y, SHEN Y, et al. In situ decoration of Au nanoparticles on carbon nitride using a single-source precursor and its application for the detection of tetracycline[J]. Journal of Colloid and Interface Science,2019,536:646-654. doi: 10.1016/j.jcis.2018.10.104
    [29]
    NAZARPOUR S, HAJIAN R, SABZVARI M H. A novel nanocomposite electrochemical sensor based on green synthesis of reduced graphene oxide/gold nanoparticles modified screen printed electrode for determination of tryptophan using response surface methodology approach[J]. Microchemical Journal,2020,154:104634. doi: 10.1016/j.microc.2020.104634
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (1111) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return