Volume 38 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
NI Jingbo, LIU Ruyi, ZHANG Ming, et al. Preparation of nano core-shell PS-CHO@RGO composite microspheres by in-situ polymerization as a potassium hydrogen persulfate catalytic activator for methylene blue degradation[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2132-2139. doi: 10.13801/j.cnki.fhclxb.20200928.003
Citation: NI Jingbo, LIU Ruyi, ZHANG Ming, et al. Preparation of nano core-shell PS-CHO@RGO composite microspheres by in-situ polymerization as a potassium hydrogen persulfate catalytic activator for methylene blue degradation[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2132-2139. doi: 10.13801/j.cnki.fhclxb.20200928.003

Preparation of nano core-shell PS-CHO@RGO composite microspheres by in-situ polymerization as a potassium hydrogen persulfate catalytic activator for methylene blue degradation

doi: 10.13801/j.cnki.fhclxb.20200928.003
  • Received Date: 2020-08-13
  • Accepted Date: 2020-09-24
  • Available Online: 2020-09-28
  • Publish Date: 2021-07-15
  • The reduced graphene oxide (RGO) has been widely used in the treatment of oil, heavy metal ions, organic dyes and other fields due to the large specific surface area, high electron transport efficiency and fast adsorption rate. However, the poor dispersion caused by agglomeration limited the further research. In-situ polymerization was used to prepare nano core-shell polystyrene aldehyde microspheres (PS-CHO)@RGO composite microspheres. The morphology and physicochemical properties of the PS-CHO@RGO composite microspheres were characterized by TEM, Raman, XRD, XPS and insulation resistance tester. The methylene blue (MB) was selected as the target pollutant, the oxidation activity of PS-CHO@RGO composite microspheres in the presence of potassium hydrogen persulfate (PMPS) was investigated, and the degradation mechanism was proposed. The results indicate that RGO layer is uniformly coated on the surface of PS-CHO microspheres, which effectively improved the dispersion. The prepared PS-CHO@RGO composite microspheres are described as low penetration threshold and perfect conductive network. In the degradation experiment, PS-CHO@RGO composite microspheres can stimulate PMPS to generate sulfate radicals (SO4•), over 98% of MB is catalytically degraded within 60 minutes. Meanwhile, the PS-CHO@RGO composite microspheres also show good stability and can be recycled by high-speed centrifugation.

     

  • loading
  • [1]
    WU J M, JING G J, LU X L, et al. The effect of sulfonated graphene on the rheological properties of cement paste[J]. Journal of Nanoscience and Nanotechnology,2020,20(12):7495-7505. doi: 10.1166/jnn.2020.18871
    [2]
    LI D, KANER R B. Graphene-based materials[J]. Nature Nanotechnology,2008,3:101-105. doi: 10.1038/nnano.2007.451
    [3]
    WEI X, MENG Z, RUIZ L, et al. Recoverable slippage mechanism in multilayer graphene leads to repeatable energy dissipation[J]. ACS Nano,2016,10(2):1820-1828. doi: 10.1021/acsnano.5b04939
    [4]
    LI C, XUE Z, QIN J, et al. Synthesis of nickel hydroxide/delaminated-Ti3C2 MXene nanosheets as promising anode material for high performance lithium ion battery[J]. Journal of Alloys and Compounds,2020,842:155812.
    [5]
    ANSARI N, PAYAMI Z. Synthesis of magnetic graphene-Fe3O4 nanocomposites by electrochemical exfoliation method[J]. Journal of Nanostructures,2020,10(1):39-43.
    [6]
    CHI F, CHEN P, MAO C. Highly efficient photocatalytic disinfection of Escherichia coli by rose bengal-functionalized graphene oxide nanosheets[J]. Journal of Nanoscience and Nanotechnology,2020,20(12):7558-7568. doi: 10.1166/jnn.2020.18615
    [7]
    RAMANATHAN T, ABDALA A A, STANKOVICH S, et al. Functionalized graphene sheets for polymer nanocomposites[J]. Nature Nanotechnology,2008,3:327-331. doi: 10.1038/nnano.2008.96
    [8]
    SUN H, LIU S, ZHOU G, et al. Reduced graphene-oxide for catalytic oxidation of aqueous organic pollutants[J]. ACS Applied Materials & Interfaces,2012,4(10):5466-5471.
    [9]
    SHUKLA P, SUN H, WANG S, et al. Co-SBA-15 for heterogeneous oxidation of phenol with sulfate radical for wastewater treatment[J]. Catalysis Today,2011,175(1):380-385. doi: 10.1016/j.cattod.2011.03.005
    [10]
    JAYANTHI S, LAVANYA T, DUTTA M, et al. Fabrication and characterization of graphene nanofibers by electrospinning technique and its electrochemical properties[J]. Journal of Nanoscience and Nanotechnology,2020,20(12):7659-7664. doi: 10.1166/jnn.2020.18625
    [11]
    ANIPSITAKIS G P, STATHATOS E, DIONYSIOU D D. Heterogeneous activation of oxone using Co3O4[J]. The Journal of Physical Chemistry B,2005,109(27):13052-13055. doi: 10.1021/jp052166y
    [12]
    LING S K, WANG S, PENG Y. Oxidative degradation of dyes in water using Co2+/H2O2 and Co2+/peroxymonosulfate[J]. Journal of Hazardous Materials,2010,178(1-3):385-389. doi: 10.1016/j.jhazmat.2010.01.091
    [13]
    BAI F, YANG X L, ZHAO Y Z, et al. Synthesis of core-shell microspheres with active hydroxyl groups by two-stage precipitation polymerization[J]. Polymer International, 2005, 54(1): 1 68-174.
    [14]
    OMI S, SAITO M, HASHIMOTO T, et al. Preparation of monodisperse polystyrene spheres incorporating polyimide prepolymer by dispersion polymerization in the presence of L-ascorbic acid[J]. Journal of Applied Polymer Science,1998,68(6):897-907. doi: 10.1002/(SICI)1097-4628(19980509)68:6<897::AID-APP4>3.0.CO;2-C
    [15]
    RIAHI K Z, SDIRI N, ENNIGROU D J, et al. Investigations on electrical conductivity and dielectric properties of graphene oxide nanosheets synthetized from modified Hummer’s method[J]. Journal of Molecular Structure,2020,1216:128304.
    [16]
    HOUAS A, LACHHEB H, KSIBI M, et al. Photocatalytic degradation pathway of methylene blue in water[J]. Applied Catalysis B: Environmental,2001,31(2):145-157. doi: 10.1016/S0926-3373(00)00276-9
    [17]
    UMEBAYASHI T, YAMAKI T, TANAKA S, et al. Visible light-induced degradation of methylene blue on S-doped TiO2[J]. Chemistry Letters,2003,32(4):330-331. doi: 10.1246/cl.2003.330
    [18]
    WU H, ZHAO W, HU H, et al. One-step in situ ball milling synthesis of polymer-functionalized graphene nanocomposites[J]. Journal of Materials Chemistry,2011,21(24):8626-8632. doi: 10.1039/c1jm10819k
    [19]
    LIU Y T, YANG J M, XIE X M, et al. Polystyrene-grafted graphene with improved solubility in organic solvents and its compatibility with polymers[J]. Materials Chemistry and Physics,2011,130(1-2):794-799. doi: 10.1016/j.matchemphys.2011.07.067
    [20]
    FAN Z, WANG K, WEI T, et al. An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder[J]. Carbon,2010,48(5):1686-1689. doi: 10.1016/j.carbon.2009.12.063
    [21]
    ZHANG H, LIU S. Electrochemical biosensors based on nitrogen-doped reduced graphene oxide for the simultaneous detection of ascorbic acid, dopamine and uric acid[J]. Journal of Alloys and Compounds,2020,842:155873.
    [22]
    KWON O S, PARK S J, HONG J Y, et al. Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer[J]. ACS Nano,2012,6(2):1486-1493. doi: 10.1021/nn204395n
    [23]
    QI X Y, YAN D, JIANG Z G, et al. Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content[J]. ACS Applied Materials & Interfaces,2011,8(3):3130-3133.
    [24]
    LUO Y, ZHAO P, YANG Q, et al. Fabrication of conductive elastic nanocomposites via framing intact interconnected graphene networks[J]. Composites Science and Technology,2014,100:143-151. doi: 10.1016/j.compscitech.2014.05.037
    [25]
    JU S A, KIM K, KIM J H, et al. Graphene-wrapped hybrid spheres of electrical conductivity[J]. ACS Applied Materials & Interfaces,2011,3(8):2904-2911.
    [26]
    KAVITHA K, URADE A R, KAUR G, et al. Low-temperature chemical vapor deposition growth of graphene layers on copper substrate using camphor precursor[J]. Journal of Nanoscience and Nanotechnology,2020,20(12):7698-7704. doi: 10.1166/jnn.2020.18862
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (1476) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return