Volume 38 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
LIU Xuhua, MIAO Jinlei, QU Lijun, et al. Research progress of composite conductive fiber in wearable intelligent textiles[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 67-83. doi: 10.13801/j.cnki.fhclxb.20200922.002
Citation: LIU Xuhua, MIAO Jinlei, QU Lijun, et al. Research progress of composite conductive fiber in wearable intelligent textiles[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 67-83. doi: 10.13801/j.cnki.fhclxb.20200922.002

Research progress of composite conductive fiber in wearable intelligent textiles

doi: 10.13801/j.cnki.fhclxb.20200922.002
  • Received Date: 2020-08-03
  • Accepted Date: 2020-09-13
  • Available Online: 2020-09-22
  • Publish Date: 2021-01-15
  • Intelligent wearable field is a cross-research field with multiple disciplines and categories, and it has attracted the scholars’ attention from all domains in recent years. As the hub of intelligent wearable devices, the conductive fibers have a broad application prospect in this field because of their excellent mechanical properties and outstanding electrical and optical functional properties. In view of the research progress of conductive fibers which can be used in flexible smart wearable textiles, the conductive mechanism and preparation methods of conductive fibers including metal conductive fibers, conductive polymer fibers, carbon conductive fibers were systematically reviewed. Then the research progress and future application direction of composite conductive fibers prepared by different electrode materials in the past three years were described in details. Finally, the development prospect of this kind of flexible conductive fiber was summarized and prospected. It is expected to be helpful to the research and development of wearable intelligent fabric equipment and miniaturized flexible intelligent electronic products in the future.

     

  • loading
  • [1]
    OUYANG H, TIAN J, SUN G, et al. Self-powered pulse sensor for antidiastole of cardiovascular disease[J]. Advanced Materials,2017,29 (40):e1703456.
    [2]
    LIU Y, PHARR M, SALVATORE G A. Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring[J]. ACS Nano,2017,11 (10):9614-9635.
    [3]
    WANG C, XIA K, WANG H, et al. Advanced carbon for flexible and wearable electronics[J]. Advanced Materials,2019,31(9):e1801072.
    [4]
    CAO M S, WANG X X, ZHANG M, et al. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials[J]. Advanced Functional Materials,2019,29(25):1807398.
    [5]
    王希晰, 曹茂盛. 特色研究报告: 低维电磁功能材料研究进展[J]. 表面技术, 2020, 49(2):18-28.

    WANG X X, CAO M S. Low-dimensional electromagnetic functional materials[J]. Surface Technology,2020,49(2):18-28(in Chinese).
    [6]
    莫崧鹰, 何继超. 崭新电子纺织品技术的发展[J]. 纺织导报, 2019(5):34-41.

    MO S Y, HE J C. Technological development of advanced electronic textiles[J]. China Textile Leader,2019(5):34-41(in Chinese).
    [7]
    ZOU Y, TAN P, SHI B, et al. A bionic stretchable nanogenerator for underwater sensing and energy harvesting[J]. Nature Communications,2019,10(1):2695.
    [8]
    LI J, LIU Q, HO D, et al. Three-dimensional graphene structure for healable flexible electronics based on Diels-Alder chemistry[J]. ACS Applied Materials & Interfaces,2018,10 (11):9727-9735.
    [9]
    WANG C, HU K, LI W, et al. Wearable wire-shaped symmetric supercapacitors based on activated carbon-coated graphite fibers[J]. ACS Applied Materials & Interfaces,2018,10(40):34302-34310.
    [10]
    MA T, GAO H L, CONG H P, et al. A bioinspired interface design for improving the strength and electrical conductivity of graphene-based fibers[J]. Advanced Materials,2018,30(15):e1706435.
    [11]
    LEE J, LLERENA ZAMBRANO B, WOO J, et al. Recent advances in 1 d stretchable electrodes and devices for textile and wearable electronics: Materials, fabrications, and applications[J]. Advanced Materials,2020,32 (5):e1902532.
    [12]
    GONG S, LAI D T H, SU B, et al. Highly stretchy black gold E-skin nanopatches as highly sensitive wearable biomedical sensors[J]. Advanced Electronic Materials,2015,1 (4):1400063.
    [13]
    DONG K, PENG X, WANG Z L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence[J]. Advanced Materials,2020,32(5):e1902549.
    [14]
    吴颖欣, 胡铖烨, 周筱雅, 等. 柔性可穿戴氨纶/聚苯胺/聚氨酯复合材料的应变传感性能[J]. 纺织学报, 2020, 41(4):21-25.

    WU Y X, HU Y Y, ZHOU X Y, et al. Strain sensing property of flexible wearable spandex/polyaniline/polyurethane composites[J]. Journal of Textile Research,2020,41(4):21-25(in Chinese).
    [15]
    吴佳奇, 李刚, 杨小平, 等. 耐高温碳纤维/双马来酰亚胺树脂复合材料制备及性能[J]. 复合材料学报, 2020, 37(7):1505-1512.

    WU J Q, LI G, YANG X P, et al. Preparation and properties of carbon fiber/bismaleimide resin composites with high heat resistance[J]. Acta Materiae Compositae Sinica,2020,37(7):1505-1512(in Chinese).
    [16]
    CAO M S, SONG W L, HOU Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites[J]. Carbon,2010,48(3):788-796.
    [17]
    WEN B, CAO M S, HOU Z L, et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites[J]. Carbon,2013:65 124-139.
    [18]
    BERGER C, SONG Z M, LI X B, et al. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science,2006,312 (5777):1191-1196.
    [19]
    LI Y H, ZHOU B, ZHENG G Q, et al. Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing[J]. Journal of Materials Chemistry C,2018,6(9):2258-2269.
    [20]
    王明序, 许子傲, 葛明桥, 高强. 浅色导电纤维的发展及其最新应用[J]. 丝绸, 2020, 57(1):37-42.

    WANG M X, XU Z A, GE M Q, et al. Development of light-colored conductive fibers and their latest applications[J]. Journal of Silk,2020,57(1):37-42(in Chinese).
    [21]
    LIAO X, DULLE M, SLIVA J, et al. A. High strength in combination with high toughness in robust and sustainable polymeric materials[J]. Science,2019,366 (6471):1376-1379.
    [22]
    ZHANG S, LIU H, YANG S, et al. Ultrasensitive and highly compressible piezoresistive sensor based on polyurethane sponge coated with a cracked cellulose nanofibril/silver nanowire layer[J]. ACS Applied Materials & Interfaces,2019,11 (11):10922-10932.
    [23]
    LIU H, LI Q, ZHANG S, et al. Electrically conductive polymer composites for smart flexible strain sensors: A critical review[J]. Journal of Materials Chemistry C,2018,6 (45):12121-12141.
    [24]
    XIE X, ZHAO M Q, ANASORI B, et al. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices[J]. Nano Energy,2016,26:513-523.
    [25]
    SOUNDIRARAJU B, GEORGE B K. Two-dimensional titanium nitride (Ti2N) Mxene: Synthesis, characterization, and potential application as surface-enhanced raman scattering substrate[J]. ACS Nano,2017,11(9):8892-8900.
    [26]
    RAJAVEL K, KE T, YANG K, et al. Condition optimization for exfoliation of two dimensional titanium carbide (Ti3C2Tx)[J]. Nanotechnology,2018,29 (9):095605. doi: 10.1088/1361-6528/aaa687
    [27]
    LEVITT A, ZHANG J, DION G, et al. Mxene-based fibers, yarns, and fabrics for wearable energy storage devices[J]. Advanced Functional Materials,2020,30(47):2000739. doi: 10.1002/adfm.202000739
    [28]
    YU L, PARKER S, XUAN H, et al. Flexible multi-material fibers for distributed pressure and temperature sensing[J]. Advanced Functional Materials,2020,30(9):1908915. doi: 10.1002/adfm.201908915
    [29]
    YANG Z, ZHAI Z, SONG Z, et al. Conductive and elastic 3D helical fibers for use in washable and wearable electronics[J]. Advanced Materials,2020,32(10):e1907495. doi: 10.1002/adma.201907495
    [30]
    PARK S, BAUGH N, SHAH H K, et al. Ultrastretchable elastic shape memory fibers with electrical conductivity[J]. Advanced Science,2019,6(21):1901579. doi: 10.1002/advs.201901579
    [31]
    CHEN G, WANG H, GUO R, et al. Superelastic egain composite fibers sustaining 500% tensile strain with superior electrical conductivity for wearable electronics[J]. ACS Applied Materials & Interfaces,2020,12 (5):6112-6118.
    [32]
    WOO J, LEE H, YI C, et al. Ultrastretchable helical conductive fibers using percolated Ag nanoparticle networks encapsulated by elastic polymers with high durability in omnidirectional deformations for wearable electronics[J]. Advanced Functional Materials,2020,30(29):1910026.
    [33]
    LI H, DU Z. Preparation of a highly sensitive and stretchable strain sensor of MXene/silver nanocomposite-based yarn and wearable applications[J]. ACS Applied Materials & Interfaces,2019,11(49):45930-45938.
    [34]
    ZHU G J, REN P G, GUO H, et al. Highly sensitive and stretchable polyurethane fiber strain sensors with embedded silver nanowires[J]. ACS Applied Materials & Interfaces,2019,11 (26):23649-23658.
    [35]
    LU Y, BISWAS M C, GUO Z, et al. Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors[J]. Biosensors and Bioelectronics,2019,123:167-177.
    [36]
    FARRAJ Y, GROUCHKO M, MAGDASSI S. Self-reduction of a copper complex mod ink for inkjet printing conductive patterns on plastics[J]. Chemical Communications,2015,51 (9):1587-1590. doi: 10.1039/C4CC08749F
    [37]
    ZHOU J, TIAN G, JIN G, et al. Buckled conductive polymer ribbons in elastomer channels as stretchable fiber conductor[J]. Advanced Functional Materials,2019,30(5):1907316.
    [38]
    PAN L, WANG F, CHENG Y, et al. A supertough electro-tendon based on spider silk composites[J]. Nature Communications,2020,11:1332. doi: 10.1038/s41467-020-14988-5
    [39]
    ZHAO X, CHEN F, LI Y, et al. Bioinspired ultra-stretchable and anti-freezing conductive hydrogel fibers with ordered and reversible polymer chain alignment[J]. Nature Communications,2018,9:3579. doi: 10.1038/s41467-018-05904-z
    [40]
    LEPAK-KUC S, MILOWSKA K Z, BONCEL S, et al. Highly conductive doped hybrid carbon nanotube–graphene wires[J]. ACS Applied Materials & Interfaces,2019,11 (36):33207-33220.
    [41]
    QIAO Y, WANG Y, TIAN H, et al. Multilayer graphene epidermal electronic skin[J]. ACS Nano,2018,12 (9):8839-8846. doi: 10.1021/acsnano.8b02162
    [42]
    CAI Y, SHEN J, GE G, et al. Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range[J]. ACS Nano,2018,12(1):56-62. doi: 10.1021/acsnano.7b06251
    [43]
    MA L, YANG W, WANG Y, et al. Multi-dimensional strain sensor based on carbon nanotube film with aligned conductive networks[J]. Composites Science and Technology,2018,165:190-197.
    [44]
    ZHU L, ZHOU X, LIU Y, et al. Highly sensitive, ultrastretchable strain sensors prepared by pumping hybrid fillers of carbon nanotubes/cellulose nanocrystal into electrospun polyurethane membranes[J]. ACS Applied Materials & Interfaces,2019,11 (13):12968-12977.
    [45]
    刘素芹, 王松, 戴高鹏, 等. 复合碳纳米管增强纳米Ag2CO3的可见光催化活性和稳定性[J]. 物理化学学报, 2014, 30(11):2121-2126. doi: 10.3866/PKU.WHXB201409191

    LIU S Q, WANG S, DAI G P, et al. Enhanced visible-light photocatalytic activity and stability of nano-sized Ag2CO3 combined with carbon nanotubes[J]. Acta Physico-Chimica Sinica,2014,30(11):2121-2126(in Chinese). doi: 10.3866/PKU.WHXB201409191
    [46]
    GAO Y, GUO F, CAO P, et al. Winding-locked carbon nanotubes/polymer nanofibers helical yarn for ultrastretchable conductor and strain sensor[J]. ACS Nano,2020,14(3):3442-3450. doi: 10.1021/acsnano.9b09533
    [47]
    ZHANG Y, ZHANG W, YE G, et al. Core-sheath stretchable conductive fibers for safe underwater wearable electronics[J]. Advanced Materials Technologies,2019,5(1):1900880.
    [48]
    CHEN Q, LI Y, XIANG D, et al. Enhanced strain sensing performance of polymer/carbon nanotube-coated spandex fibers via noncovalent interactions[J]. Macromolecular Materials and Engineering,2019,305 (2):1900525.
    [49]
    李绍娟, 甘胜, 沐浩然, 等. 石墨烯光电子器件的应用研究进展[J]. 新型炭材料, 2014, 29(5):329-356.

    LI S J, GAN S, MU H R, et al. Research progress in graphene use in photonic and optoelectronic devices[J]. New Carbon Materials,2014,29(5):329-356(in Chinese).
    [50]
    匡达, 胡文彬. 石墨烯复合材料的研究进展[J]. 无机材料学报, 2013, 28(3):235-246. doi: 10.3724/SP.J.1077.2013.12345

    KUANG D, HU W B. Research progress of graphene composites[J]. Journal of Inorganic Materials,2013,28(3):235-246(in Chinese). doi: 10.3724/SP.J.1077.2013.12345
    [51]
    ZHANG J, CAO Y, QIAO M, et al. Human motion monitoring in sports using wearable graphene-coated fiber sensors[J]. Sensors and Actuators A: Physical,2018,274:132-140.
    [52]
    MARRIAM I, WANG X, TEBYETEKERWA M, et al. A bottom-up approach to design wearable and stretchable smart fibers with organic vapor sensing behaviors and energy storage properties[J]. Journal of Materials Chemistry A,2018,6 (28):13633-13643. doi: 10.1039/C8TA03262A
    [53]
    HUANG T, HE P, WANG R, et al. Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain sensors[J]. Advanced Functional Materials,2019,29 (45):1903732. doi: 10.1002/adfm.201903732
    [54]
    HU X, TIAN M, XU T, et al. Multiscale disordered porous fibers for self-sensing and self-cooling integrated smart sportswear[J]. ACS Nano,2020,14 (1):559-567. doi: 10.1021/acsnano.9b06899
    [55]
    ZHU M, LOU M, ABDALLA I, et al. Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing[J]. Nano Energy,2020,69:104429. doi: 10.1016/j.nanoen.2019.104429
    [56]
    ZHAO S, GUO L, LI J, et al. Binary synergistic sensitivity strengthening of bioinspired hierarchical architectures based on fragmentized reduced graphene oxide sponge and silver nanoparticles for strain sensors and beyond[J]. Small,2017,13 (28):1700944. doi: 10.1002/smll.201700944
    [57]
    REN J, WANG C, ZHANG X, et al. Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide[J]. Carbon,2017,111:622-630.
    [58]
    LI X, KOH K H, FARHAN M, et al. An ultraflexible polyurethane yarn-based wearable strain sensor with a polydimethylsiloxane infiltrated multilayer sheath for smart textiles[J]. Nanoscale,2020,12 (6):4110-4118. doi: 10.1039/C9NR09306K
    [59]
    董兰静, 张强, 蔡璋文, 等. 压力作用下Cr2AC相(A=Si、Ge)的第一性原理研究[J]. 硅酸盐通报, 2019, 38(5):1343-1348, 1355.

    DONG L J, ZHANG Q, CAI Z W, et al. First principles study on Cr2AC phases (A = Si, Ge) under pressure[J]. Bulletin of the Chinese Ceramic Society,2019,38(5):1343-1348, 1355(in Chinese).
    [60]
    SEYEDIN S, UZUN S, LEVITT A, et al. MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles[J]. Advanced Functional Materials,2020,30(12):1910504. doi: 10.1002/adfm.201910504
    [61]
    CHENG Y, MA Y, LI L, et al. Bioinspired microspines for a high-performance spray Ti3C2Tx mxene-based piezoresistive sensor[J]. ACS Nano,2020,14(2):2145-2155. doi: 10.1021/acsnano.9b08952
    [62]
    ZHANG J, UZUN S, SEYEDIN S, et al. Additive-free MXene liquid crystals and fibers[J]. ACS Central Science,2020,6 (2):254-265. doi: 10.1021/acscentsci.9b01217
    [63]
    SHI J D, LIU S, ZHANG L S, et al. Smart textile-integrated microelectronic systems for wearable applications[J]. Advanced Materials,2020,32(5):1901958.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (3737) PDF downloads(377) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return