Volume 38 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
DING Yinghui, QI Guocheng, ZHANG Boming. Recent progress in carbon fiber reinforced composites for electricity storage[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 16-24. doi: 10.13801/j.cnki.fhclxb.20200921.006
Citation: DING Yinghui, QI Guocheng, ZHANG Boming. Recent progress in carbon fiber reinforced composites for electricity storage[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 16-24. doi: 10.13801/j.cnki.fhclxb.20200921.006

Recent progress in carbon fiber reinforced composites for electricity storage

doi: 10.13801/j.cnki.fhclxb.20200921.006
  • Received Date: 2020-07-20
  • Accepted Date: 2020-09-07
  • Available Online: 2020-09-22
  • Publish Date: 2021-01-15
  • Composite materialization is an important trend in the structural upgrading of aerospace, defense, transportation, etc. Due to excellent mechanical properties and electrical conductivity, carbon fiber reinforced composites can be used in structural components whilst having the capacity to store/output electrical energy, which realize an integration of load bearing and electrical power charge/discharge. Hence, both the multifunctional material and the lightweight structure can be achieved using such carbon fibre composites. Structural power composites are comprised of carbon fiber electrodes, glass fiber separator and solid electrolytes, which are multifunctional polymer matrix transferreing load from reinforcments and enabling ions to travel between electrodes. This paper reviewed the typical structural power composites, including structural batteries, structural dielectric capacitors and structural supercapacitors. Constituent materials, device working principles and multifunctional characteristics were summarized for three types of structural power composites. The problems and challenges facing structural power composites were eventually dicussed. Insights were given for the development trend of structural power composites.

     

  • loading
  • [1]
    杨小平, 黄智彬, 张志勇, 等. 实现节能减排的碳纤维复合材料应用进展[J]. 材料导报, 2010, 24(3):1-5, 20.

    YANG Xiaoping, HUANG Zhibin, ZHANG Zhiyong, et al. Application progress of carbon fiber composite materials for energy saving and emission reduction[J]. Materials Review,2010,24(3):1-5, 20(in Chinese).
    [2]
    薛军. 瑞典研制具有高抗拉强度碳纤维锂电池材料[J]. 电动自行车, 2014(7):46-48. doi: 10.3969/j.issn.1672-6936.2014.07.018

    XUE Jun. Sweden develops carbon fiber lithium battery materials with high tensile strength[J]. Electric Bicycle,2014(7):46-48(in Chinese). doi: 10.3969/j.issn.1672-6936.2014.07.018
    [3]
    YU Y, ZHANG B, FENG M, et al. Multifunctional structural lithium ion batteries based on carbon fiber reinforced plastic composites[J]. Composites Science and Technology,2017,147:62-70.
    [4]
    SHAO Y, EL-KADY M F, SUN J, et al. Design and mechanisms of asymmetric supercapacitors[J]. Chemical Reviews,2018,118(18):9233-9280.
    [5]
    SNYDER J F, O’BRIEN D J, WETZEL E D. Structural batteries, capacitors and supercapacitors[M]//DUDNEY N J, WEST W C, NANDA J. Handbook of solid state batteries (Second Edition). Washington: World Scientific, 2015: 659-699.
    [6]
    CHRISTEN T, CARLEN M W. Theory of Ragone plots[J]. Journal of Power Sources,2000,91(2):210-216. doi: 10.1016/S0378-7753(00)00474-2
    [7]
    DINCER I. Renewable energy and sustainable development: A crucial review[J]. Renewable and Sustainable Enerdy Reviews,2000,4(2):157-175. doi: 10.1016/S1364-0321(99)00011-8
    [8]
    PANWAR N L, KAUSHIK S C, KOTHARI S. Role of renewable energy sources in environmental protection: A review[J]. Renewable and Sustainable Energy Reviews,2011,15(3):1513-1524. doi: 10.1016/j.rser.2010.11.037
    [9]
    THOMAS J P, QIDWAI M A. Mechanical design and performance of composite multifunctional materials[J]. Acta Materialia,2004,52(8):2155-2164. doi: 10.1016/j.actamat.2004.01.007
    [10]
    THOMAS J, QIDWAI M. The design and application of multifunctional structure-battery materials systems[J]. JOM,2005,57(3):18-24. doi: 10.1007/s11837-005-0228-5
    [11]
    张瑞. 金属硅储锂性能的研究[D]. 天津: 天津理工大学, 2013.

    ZHANG Rui. Lithium storage property of metallic silicon[D]. Tianjin: Tianjin University of Technology, 2013(in Chinese).
    [12]
    CARLSON T, DANIEL O, WYSOCKI M, et al. Structural capacitor materials made from carbon fibre epoxy composites[J]. Composites Science & Technology,2010,70(7):1135-1140.
    [13]
    ASP L, ALEXANDER B, GÖRAN L, et al. Battery half cell, a battery and their manufacture: United States, 20150180086[P]. 2015-06-25.
    [14]
    JACQUES E, KJELL M H, ZENKERT D, et al. Expansion of carbon fibers induced by lithium intercalation for structural electrode applications[J]. Carbon,2013,59:246-254. doi: 10.1016/j.carbon.2013.03.015
    [15]
    KJELL M H, JACQUES E, ZENKERT D, et al. PAN-based carbon fiber negative electrodes for structural lithium-ion batteries[J]. Journal of the Electrochemical Society,2011,158(12):1455-1460. doi: 10.1149/2.053112jes
    [16]
    LIU P, SHERMAN E, JACOBSEN A. Design and fabrication of multifunctional structural batteries[J]. Journal of Power Sources,2009,189(1):646-650. doi: 10.1016/j.jpowsour.2008.09.082
    [17]
    SNYDER J F, CARTER R H, WONG E L, et al. Multifunctional structural composite batteries[C]//Proceedings of Society for the Advancement of Materiel and Process Engineering (SAMPE) 2006 Fall Technical Conference. Dallas: SAMPE, 2006.
    [18]
    WONG E L, BAECHELE D M, XU K, et al. Design and processing of structural composite batteries[C]//Proceedings of Society for the Advancement of Materiel and Process Engineering (SAMPE) 2007 Symposium and Exhibition. Baltimore: SAMPE, 2007.
    [19]
    GREENHALGH E. Storage composite structural power storage for hybrid vehicles[C]//Proceedings of the 15th European Conference on Composite Materials. Venice: ECCM, 2012.
    [20]
    HE K, CHEN C, FAN R, et al. Polyethylene oxide/garnet-type Li6.4La3Zr1.4Nb0.6O12 composite electrolytes with improved electrochemical performance for solid state lithium rechargeable batteries[J]. Composites Science & Technology,2019,175:28-34.
    [21]
    LEIJONMARCK S, CARLSON T, LINDBERGH G, et al. Solid polymer electrolyte-coated carbon fiber for structural and novel micro batteries[J]. Composites Science and Technology,2013,89:149-157. doi: 10.1016/j.compscitech.2013.09.026
    [22]
    CHUNG D D L. Development, design and applications of structural capacitors[J]. Applied Energy,2018,231:89-101. doi: 10.1016/j.apenergy.2018.09.132
    [23]
    CARLSON T, ASP L E. Structural carbon fibre composite/PET capacitors: Effects of dielectric separator thickness[J]. Composites Part B: Engineering,2013,49:16-21.
    [24]
    CHAN K Y, JIA B, LIN H, et al. Design of a structural power composite using graphene oxide as a dielectric material layer[J]. Materials Letters,2018,216:162-165. doi: 10.1016/j.matlet.2017.12.118
    [25]
    O’BRIEN D J, BAECHLE D M, YURCHAK O B, et al. Effect of processing conditions and electrode characteristics on the electrical properties of structural composite capacitors[J]. Composites Part A: Applied Science and Manufacturing,2015,68:47-55.
    [26]
    LUO X, CHUNG D D L. Carbon-fiber/polymer-matrix composites as capacitors[J]. Composites Science & Technology,2001,61(6):885-888.
    [27]
    LIN Y, ZHOU Z, SODANO H A. Barium titanate and barium strontium titanate coated carbon fibers for multifunctional structural capacitors[J]. Journal of Composite Materials,2013,47(12):1527-1533. doi: 10.1177/0021998312449029
    [28]
    CHEN X, PAUL R, DAI L. Carbon-based supercapacitors for efficient energy storage[J]. National Science Review,2017,4(3):453-489.
    [29]
    QIAN H, KUCERNAK A R, GREENHALGH E S, et al. Multifunctional structural supercapacitor composites based on carbon aerogel modified high performance carbon fiber fabric[J]. ACS Applied Materials & Interfaces,2013,5(13):6113-6122.
    [30]
    SHIRSHOVA N, QIAN H, SHAFFER M S P, et al. Structural composite supercapacitors[J]. Composites Part A: Applied Science & Manufacturing,2013,46:96-107.
    [31]
    GREENHALGH E S, ANKERSEN J, ASP L E, et al. Mechanical, electrical and microstructural characterisation of multifunctional structural power composites[J]. Journal of Composite Materials,2015,49(15):1823-1834. doi: 10.1177/0021998314554125
    [32]
    DEKA B K, HAZARIKA A, KIM J, et al. Multifunctional CuO nanowire embodied structural supercapacitor based on woven carbon fiber/ionic liquid-polyester resin[J]. Composites Part A: Applied Science and Manufacturing,2016,87:256-262. doi: 10.1016/j.compositesa.2016.05.007
    [33]
    REECE R, LEKAKOU C, SMITH P A. A structural supercar-pacitor based on activated carbon fabric and a solid electrolyte[J]. Materials Science & Technology,2019,35(3):368-375.
    [34]
    JAVAID A, ZAFRULLAH M B, KHAN F U H, et al. Improving the multifunctionality of structural supercapacitors by interleaving graphene nanoplatelets between carbon fibers and solid polymer electrolyte[J]. Journal of Composite Materials,2018,53(10):1401-1409.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (3770) PDF downloads(280) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return