Volume 38 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
XIAO Yi, ZHOU Lili, XU Chengyi, et al. Preparation of slippery surface based on femtosecond laser toward photo-induced droplet manipulation[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 517-525. doi: 10.13801/j.cnki.fhclxb.20200713.003
Citation: XIAO Yi, ZHOU Lili, XU Chengyi, et al. Preparation of slippery surface based on femtosecond laser toward photo-induced droplet manipulation[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 517-525. doi: 10.13801/j.cnki.fhclxb.20200713.003

Preparation of slippery surface based on femtosecond laser toward photo-induced droplet manipulation

doi: 10.13801/j.cnki.fhclxb.20200713.003
  • Received Date: 2020-04-07
  • Accepted Date: 2020-07-10
  • Available Online: 2020-07-13
  • Publish Date: 2021-02-15
  • The droplet dynamic manipulation on photo-induced slippery lubricant-infused porous surface (SLIPS) has attracted tremendous attention because of its significant merits of contactless stimulation and excellent spatial and temporal control. However, the traditional fabrication methods by a combination of template-transfer and fluorination for a light-driven SLIPS are tedious and not environment-friendly. Accordingly, a kind of Fe3O4 nanoparticles(NPs)-doped nepenthes-inspired photothermal SLIPS was fabricated by femtosecond laser cross-scanning rapidly, which could readily steer diverse liquids towards arbitrary directions by utilizing droplet wettability gradient and internal Malangoni flow in the presence of unilateral near-infrared-irradiation-stimuli. Besides, the droplet manipulation performance was optimized by quantitatively analyzing the influence of Fe3O4-doped-content, lubricant rheological performance, diverse liquid species on sliding velocity and response time. The smart manipulator for controllable droplet directions and routes can be utilized to give an impetus to the extensive application of lab-on-a-chip, microfluidics and biomedical engineering and so on.

     

  • loading
  • [1]
    BOHN H F, FEDERLE W. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface[J]. Proceedings of the National Academy of Sciences,2004,101(39):14138-14143. doi: 10.1073/pnas.0405885101
    [2]
    MIGUEL S, HEHN A, BOURGAUD, et al. Nepenthes: State of the art of an inspiring plant for biotechnologists[J]. Journal of Biotechnology,2018,265:109-115. doi: 10.1016/j.jbiotec.2017.11.014
    [3]
    WONG T S, KANG S H, TANG S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature,2011,477(7365):443-447. doi: 10.1038/nature10447
    [4]
    DANIEL D, MANKIN M N, BELISLE R A, et al. Lubricant-infused micro/nano-structured surfaces with tunable dynamic omniphobicity at high temperatures[J]. Applied Physics Letters,2013,102(23):231603. doi: 10.1063/1.4810907
    [5]
    YAO X, HU Y, GRINTHAL A, et al. Adaptive fluid-infused porous films with tunable transparency and wettability[J]. Nature Materials,2013,12(6):529-534. doi: 10.1038/nmat3598
    [6]
    ROSENBERG B J, VAN BUREN T, FU M K, et al. Turbulent drag reduction over air- and liquid-impregnated surfaces[J]. Physics of Fluids,2016,28(1):015103. doi: 10.1063/1.4939272
    [7]
    BOREYKO J B, POLIZOS G, DATSKOS P G, et al. Air-stable droplet interface bilayers on oil-infused surfaces[J]. Proceedings of the National Academy of Sciences,2014,111(21):7588-7593. doi: 10.1073/pnas.1400381111
    [8]
    韦存茜, 赵镭, 王永香, 等. 仿生超浸润材料在防覆冰涂层中的应用[J]. 涂料工艺, 2019, 49(4):80-87.

    WEI C Q, ZHAO L, WANG Y X, et al. Application of bio-inspired superwetting materials in anti-icing coatings[J]. Paint & Coatings Industry,2019,49(4):80-87(in Chinese).
    [9]
    IRAJIZAD P, HASNAIN M, FAROKHNIA N, et al. Magnetic slippery extreme icephobic surfaces[J]. Nature Communications,2016,7:13395. doi: 10.1038/ncomms13395
    [10]
    YIN J L, MEI M L, LI Q L, et al. Self-cleaning and antibiofouling enamel surface by slippery liquid-infused technique[J]. Scientific Reports,2016,6:25924. doi: 10.1038/srep25924
    [11]
    LIU H, ZHANG P, LIU M, et al. Organogel-based thin films for self- cleaning on various surfaces[J]. Advanced Materials,2013,25(32):4477-4481. doi: 10.1002/adma.201301289
    [12]
    周明, 郑傲然, 杨加宏. 复制模塑法制备超疏水表面及其应用[J]. 物理化学学报, 2007, 23(8):1296-1300. doi: 10.3866/PKU.WHXB20070831

    ZHOU M, ZHENG A R, YANG J H. Superhydrophobic surfaces fabricated by replica molding andits applications[J]. Acta Physico-Chimica Sinica,2007,23(8):1296-1300(in Chinese). doi: 10.3866/PKU.WHXB20070831
    [13]
    KOVALENKO Y, SOTIRI I, TIMONEN J V I, et al. Bacterial interactions with immobilized liquid layers[J]. Advanced Healthcare Materials,2016,6(5):1600948.
    [14]
    ANAND S, PAXSON A T, DHIMAN R, et al. Enhanced condensation on lubricant-impregnated nanotextured surfaces[J]. ACS Nano,2012,6(11):10122-10129. doi: 10.1021/nn303867y
    [15]
    KAJIYA T, SCHELLENBERGER F, PAPSDOPOULOS P, et al. 3D imaging of water-drop condensation on hydro-phobic and hydrophilic lubricant-impregnated surfaces[J]. Scientific Reports,2016,6:23687. doi: 10.1038/srep23687
    [16]
    FU M K, ARENAS I, LEONARDI S, et al. Liquid-infused surfaces as a passive method of turbulent drag reduction[J]. Journal of Fluid Mechanics,2017,824(10):688-700.
    [17]
    WANG Y, ZHANG H, LIU X, et al. Slippery liquid-infused substrates: A versatile preparation, unique anti-wetting and drag-reduction effect on water[J]. Journal of Materials Chemistry A,2016,4(7):2524-2529. doi: 10.1039/C5TA09936F
    [18]
    ZHAO H, SUN Q, DENG X, et al. Earthworm-inspired rough polymer coatings with self-replenishing lubrication for adaptive friction-reduction and antifouling surfaces[J]. Advanced Materials,2018,30(29):1802141. doi: 10.1002/adma.201802141
    [19]
    WANG Y, QIAN B, LAI C, et al. Flexible slippery surface to manipulate dropletcoalescence and sliding, and its practicability in wind-resistant water collection[J]. ACS Applied Materials & Interfaces,2017,9(29):24428-24432.
    [20]
    MANABE K, MATSUBAYASHI T, TENJIMBAYASHI M, et al. Controllable broadband optical transparencyand wettability switching of temperature-activated solid/liquid-infused nanofibrous membranes[J]. ACS Nano,2016,10(10):9387-9396. doi: 10.1021/acsnano.6b04333
    [21]
    ZHENG Y, LIU X, XU J, et al. Thermo-responsive mobile interfaces with switchable wettability, optical properties, and penetrability[J]. ACS Applied Materials & Interfaces,2017,9(40):35483-35491.
    [22]
    WANG Z B, HENG L P, JIANG L. Effect of lubricant viscosity on the self-healing properties and electrically driven sliding of droplets on anisotropic slippery surfaces[J]. Journal of Materials Chemistry A,2018,6(8):3414-3421. doi: 10.1039/C7TA10439A
    [23]
    CHE P, HENG L, JIANG L. Lubricant-infused anisotropic porous surface design of reduced graphene oxide toward electrically driven smart control of conductive droplets motion[J]. Advanced Functional Materials,2017,27(22):1606199. doi: 10.1002/adfm.201606199
    [24]
    程甜甜. 磁响应仿生多功能涂层的制备及其防覆冰性能[D]. 杭州: 浙江大学, 2016.

    CHENG T. Magnetic particles based multifunctional surface for anti-icing and thermal responsive de-icing performance[D]. Hangzhou: Zhejiang University, 2016(in Chinese).
    [25]
    CAO M, JIN X, PENG Y, et al. Unidirectional wetting properties on multi-bioinspired magnetocontrollable slippery microcilia[J]. Advanced Materials,2017,29(23):1606869. doi: 10.1002/adma.201606869
    [26]
    WOOH S, BUTT H J. A photocatalytically active lubricant-impregnated surface[J]. Angewandte Chemie,2017,129(18):5047-5051. doi: 10.1002/ange.201611277
    [27]
    WANG Z, LIU Y, GUO P, et al. Porous films: Photoelectric synergetic responsive slippery surfaces based on tailored anisotropic films generated by interfacial directional freezing[J]. Advanced Functional Materials,2018,28(49):1870350. doi: 10.1002/adfm.201870350
    [28]
    GUO P, WANG Z, HENG L, et al. Magnetocontrollable droplet and bubble manipulation on a stable amphibious slippery gel surface[J]. Advanced Functional Materials,2019,29:1808717. doi: 10.1002/adfm.201808717
    [29]
    HAN K, HENG L, ZHANG Y, et al. Slippery surface based on photoelectric responsive nanoporous composites with optimal wettability region for droplets' multifunctional manipulation[J]. Advanced Science,2019,6:1801231. doi: 10.1002/advs.201801231
    [30]
    GAO C, WANG L, LIN Y, et al. Droplets manipulated on photothermal organogel surfaces[J]. Advanced Function Materials,2018,28(35):1803072. doi: 10.1002/adfm.201803072
    [31]
    WANG J, GAO W, ZHANG H, et al. Programmable wettability on photo-controlled graphene film[J]. Science Advances,2018,4(9):eaat7392. doi: 10.1126/sciadv.aat7392
    [32]
    XU Z, SHEN C, HOU Y, et al. Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles[J]. Chemistry of Materials,2009,21(9):1778-1780. doi: 10.1021/cm802978z
    [33]
    VOROBYEV A Y, GUO C. Direct femtosecond laser surface nano/microstructuring and its applications[J]. Laser & Photonics Reviews,2013,7(3):385-407.
    [34]
    KELLER U. Recent developments in compact ultrafast lasers[J]. Nature,2003,424(6950):831-838. doi: 10.1038/nature01938
    [35]
    HAN K, HENG L, ZHANG Y, et al. Slippery surface based on photoelectric responsive nanoporous composites with optimal wettability region for droplets' multifunctional manipulation[J]. Advanced Science,2018,6(1):1801231.
    [36]
    GOOD R J. A thermodynamic derivation of wenzel′s modification of Young′s equation for contact angles; together with a theory of hysteresis[J]. Journal of the American Chemical Society,1952,4(20):5041-5042.
    [37]
    CHAUDHURY M K, WHITESIDES G M. How to make water run uphill[J]. Science,1992,256(5063):1539-1541. doi: 10.1126/science.256.5063.1539
    [38]
    IRAJIZAD P, RAY S, FAROKHNIA N, et al. Remote droplet manipulation on self-healing thermally activated magnetic slippery surfaces[J]. Advanced Materials Interfaces,2017,4(12):1700009. doi: 10.1002/admi.201700009
    [39]
    BJELOBRK N, GIRARD H L, SUBRAMANYAM S B, et al. Thermocapillary motion on lubricant-impregnated surfaces[J]. Physical Review Fluids,2016,1(6):063902. doi: 10.1103/PhysRevFluids.1.063902
    [40]
    BANUPRASAD T N, VINAYA T V, SUBASH C K, et al. Fast transport of water droplets over a thermo-switchable surface using rewritable wettability gradient[J]. ACS Applied Materials & Interfaces,2017,9(33):28046-28054.
    [41]
    HOU Y P, XUE B L, GUAN S, et al. Temperature-controlled directional spreading of water on a surface with high hysteresis[J]. NPG Asia Materials,2013,5(12):162-168. doi: 10.1038/am.2013.70
    [42]
    WU S, ZHOU L, CHEN C, et al. Photothermal actuation of diverse liquids on Fe3O4-doped slippery surface for electric switch and cell culture[J]. Langmuir,2019,35(43):13915-13922. doi: 10.1021/acs.langmuir.9b02068
    [43]
    CHEN H, ZHANG P, ZHANG L, et al. Continuous directional water transport on the peristome surface of nepenthes alata[J]. Nature,2016,532(7597):85-89. doi: 10.1038/nature17189
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (970) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return