Volume 38 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
YU Feng, LOU Zongke, YAO Rufang, et al. Effect of compounding of antifoaming agent and viscosity enhancing agent on frost resistance of mold bag concrete[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 879-890. doi: 10.13801/j.cnki.fhclxb.20200713.001
Citation: YU Feng, LOU Zongke, YAO Rufang, et al. Effect of compounding of antifoaming agent and viscosity enhancing agent on frost resistance of mold bag concrete[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 879-890. doi: 10.13801/j.cnki.fhclxb.20200713.001

Effect of compounding of antifoaming agent and viscosity enhancing agent on frost resistance of mold bag concrete

doi: 10.13801/j.cnki.fhclxb.20200713.001
  • Received Date: 2020-05-14
  • Accepted Date: 2020-06-28
  • Available Online: 2020-07-13
  • Publish Date: 2021-03-15
  • For the requirement of mold bag concrete to achieve high frost resistance under large flowability, the effects of air content, antifoaming agent and viscosity enhancing agent on the workability and frost resistance of concrete were studied by orthogonal test. The test results show that the air and antifoaming agent contents are significant factors that affect the relative dynamic elastic modulus and the air content of mold bag concrete is significantly greater than antifoaming agent content; the viscosity enhancing agent increases the relative dynamic elastic modulus to a lesser extent. The compounding of antifoaming agent and viscosity enhancing agent can achieve the effects of synergistically improving the workability, pore structure and frost resistance of mold bag concrete. When the air content is 5vol%–6vol%, the compounding of 0.15wt% antifoaming agent and 0.03wt% viscosity enhancing agent can reduce the air content loss rate and the slump flow loss rate by 64.28% and 55.04%, respectively. The number of harmful large bubbles is eliminated by 81.38%. The number of air bubbles is increased by 14.89%,. The spacing factor is decreased by 11.54%. The specific surface area is increased by 20.49%. The relative dynamic elastic modulus is increased by 11.97%. Both the spacing factor and the specific area have a good correlation with the relative dynamic elastic modulus. The frost resistance grade of the mold bag concrete with spacing factor not more than 361 μm and specific surface area not less than 16.13 mm−1 can reach F300. The test results are regressed, and the prediction models of the frost resistence of the mold bag concrete are obtained.

     

  • loading
  • [1]
    谢天逸, 娄宗科, 霍轶珍, 等. 粉煤灰与矿渣复掺对渠道衬砌模袋混凝土流动性和力学性能的影响[J]. 干旱地区农业研究, 2019, 37(2):32-36.

    XIE T Y, LOU Z K, HUO Y Z, et al. The impact of mixing fly ash and slag powder with concrete on the flowability and mechanical property of channel lining of mold bag concrete[J]. Agricultural Research in the Arid Areas,2019,37(2):32-36(in Chinese).
    [2]
    中华人民共和国住房和城乡建设部. 混凝土结构耐久性设计标准: GB/T 50476—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Construction of the People’s Republic of China. Standard for design of concrete structure durability: GB/T 50476—2019[S]. Beijing: China Architecture & Buiding Press, 2019(in Chinese).
    [3]
    American Concrete Institute. Building code requirements for structural b concrete and commentary: ACI 318—19[S]. Farmington Hills: American Concrete Institute, 2019.
    [4]
    袁晓峰. 抗冻混凝土的制备及性能研究[D]. 重庆: 重庆大学, 2016.

    YUAN X F. Research on preparation and performance of frost-resistance concrete[D]. Chongqing: Chongqing University, 2016(in Chinese).
    [5]
    蒋亚清, 许仲梓, 黎非, 等. 聚羧酸类混凝土引气剂的工程性能[J]. 东南大学学报(自然科学版), 2006, 36(4):568-571. doi: 10.3321/j.issn:1001-0505.2006.04.015

    JIANG Y Q, XU Z Z, LI F, et al. Engineering performance of polycarboxylate based air entraining agent[J]. Journal of Southeast University (Natural Science Edition),2006,36(4):568-571(in Chinese). doi: 10.3321/j.issn:1001-0505.2006.04.015
    [6]
    刘加平, 尚燕, 缪昌文, 等. 聚羧酸系减水剂引气方式对混凝土性能的影响[J]. 建筑材料学报, 2011, 14(4):528-531. doi: 10.3969/j.issn.1007-9629.2011.04.018

    LIU J P, SHANG Y, MIAO C W, et al. Effects of air entraining manners of polycarboxylate-type water reducer on the properties of concrete[J]. Journal of Building Materials,2011,14(4):528-531(in Chinese). doi: 10.3969/j.issn.1007-9629.2011.04.018
    [7]
    李炜, 陆加越, 刘浩, 等. 消泡剂和引气剂复掺对混凝土气泡参数及外观形貌的影响[J]. 混凝土, 2016(8):103-106. doi: 10.3969/j.issn.1002-3550.2016.08.027

    LI W, LU J Y, LIU H, et al. Effects of the mixture of the bubble and the air entrained agent on the bubble parameters and appearance of the concrete[J]. Concrete,2016(8):103-106(in Chinese). doi: 10.3969/j.issn.1002-3550.2016.08.027
    [8]
    单广程, 吴井志, 乔敏, 等. 消泡剂对引气剂的界面行为和作用效果的影响[J]. 硅酸盐学报, 2020, 48(5):638-643.

    SHAN G C, WU J Z, QIAO M, et al. Influence of defoamer on interface behavior and effect of air entraining agent[J]. Journal of the Chinese Ceramic Society,2020,48(5):638-643(in Chinese).
    [9]
    顾国芳, 曹民干. 水溶性聚合物对水下施工混凝土性能的影响[J]. 建筑材料学报, 2003, 6(1):30-34. doi: 10.3969/j.issn.1007-9629.2003.01.006

    GU G F, CAO M G. Effects of water soluble polymers on underwater concrete[J]. Journal of Building Materials,2003,6(1):30-34(in Chinese). doi: 10.3969/j.issn.1007-9629.2003.01.006
    [10]
    杨元霞. 甲基纤维素对新拌水泥浆体性能的影响[J]. 建筑材料学报, 2004, 7(2):221-226. doi: 10.3969/j.issn.1007-9629.2004.02.018

    YANG Y X. Influence of methyl cellulose on properties of fresh cement paste[J]. Journal of Building Materials,2004,7(2):221-226(in Chinese). doi: 10.3969/j.issn.1007-9629.2004.02.018
    [11]
    吴凯, 康旺, 徐玲琳, 等. 羟乙基甲基纤维素对硫铝酸盐水泥早期水化的影响[J]. 硅酸盐学报, 2020, 48(5):615-621.

    WU K, KANG W, XU L L, et al. Influence of hydroxyethyl methyl cellulose on early hydration of calcium sulfoaluminate cement[J]. Journal of the Chinese Ceramic Society,2020,48(5):615-621(in Chinese).
    [12]
    欧志华, 马保国, 蹇守卫. 非离子纤维素醚改性水泥浆的孔结构[J]. 建筑材料学报, 2013, 16(1):121-126, 137. doi: 10.3969/j.issn.1007-9629.2013.01.023

    OU Z H, MA B G, JIAN S W. Pore structure of cement modified by non-ionic cellulose ethers[J]. Journal of Building Materials,2013,16(1):121-126, 137(in Chinese). doi: 10.3969/j.issn.1007-9629.2013.01.023
    [13]
    张国防, 王顺祥, 陆小培, 等. HEMC改性水泥砂浆在硫酸盐侵蚀作用下的力学性能[J]. 建筑材料学报, 2019, 22(2):173-178. doi: 10.3969/j.issn.1007-9629.2019.02.002

    ZHANG G F, WANG S X, LU X P, et al. Mechanical properties of HEMC modified cement mortars exposed to sulfate attack[J]. Journal of Building Materials,2019,22(2):173-178(in Chinese). doi: 10.3969/j.issn.1007-9629.2019.02.002
    [14]
    WYRZYKOWSKI M, KIESEWETTER R, MÜNCH B, et al. Pore structure of mortars with cellulose ether additions: Study of the air-void structure[J]. Cement and Concrete Composites,2015,62:117-124. doi: 10.1016/j.cemconcomp.2015.04.016
    [15]
    SILVA D A, JOHN V M, RIBEIRO J L D, et al. Pore size distribution of hydrated cement pastes modified with polymers[J]. Cement and Concrete Research,2001,31(8):1177-1184. doi: 10.1016/S0008-8846(01)00549-X
    [16]
    POURCHEZ J, RUOT B, DEBAYLE J, et al. Some aspects of cellulose ethers influence on water transport and porous structure of cement-based materials[J]. Cement and Concrete Research,2010,40(2):242-252. doi: 10.1016/j.cemconres.2009.09.028
    [17]
    ZHANG J, GAO X, YU L. Improvement of viscosity-modifying agents on air-void system of vibrated concrete[J]. Construction and Building Materials,2020,239:117843. doi: 10.1016/j.conbuildmat.2019.117843
    [18]
    黄海, 元强, 邓德华, 等. 掺化学外加剂水泥净浆的含气量稳定性与流变性能的关系[J]. 硅酸盐学报, 2019, 47(11):1593-1604.

    HUANG H, YUAN Q, DENG D H, et al. Relationship between air content stability and rheological properties of cement paste with chemical admixtures[J]. Journal of the Chinese Ceramic Society,2019,47(11):1593-1604(in Chinese).
    [19]
    中华人民共和国住房和城乡建设部. 自密实混凝土应用技术规程: JGJ/T 283—2012[S]. 北京: 中国建筑工业出版社, 2012.

    Ministry of Housing and Urban-Rural Construction of the People’s Republic of China. Technical specification for application of self-compacting concrete: JGJ/T 283—2012[S]. Beijing: China Architecture & Buiding Press, 2012(in Chinese).
    [20]
    中华人民共和国住房和城乡建设部. 普通混凝土拌合物性能试验方法标准: GB/T 50080—2016[S]. 北京: 中国建筑工业出版社, 2016.

    Ministry of Housing and Urban-Rural Construction of the People’s Republic of China. Standard for test method of performance on ordinary fresh concrete: GB/T 50080—2016[S]. Beijing: China Architecture & Buiding Press, 2016(in Chinese).
    [21]
    ASTM International. Standard test method for microscopical determination of parameters of the air-void system in hardened concrete: ASTM C457M—16[S]. West Conshohocken: ASTM International, 2016.
    [22]
    中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.

    Ministry of Housing and Urban-Rural Construction of the People’s Republic of China. Standard for test method of long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture & Buiding Press, 2009(in Chinese).
    [23]
    中国国家标准化管理委员会. 数据的统计处理和解释正态样本离群值的判断和处理: GB/T 4883—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Statistical interpretation of data detection and treatment of outliers in the normal sample: GB/T 4883—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [24]
    李雪峰. 青藏高原地区混凝土抗冻设计及预防措施研究[D]. 南京: 东南大学, 2015.

    LI X F. Anti-frost design method and preventive measures for concrete structure in the Qinghai-Tibet plateau[D]. Nanjing: Southeast University, 2015(in Chinese).
    [25]
    HUANG H, YUAN Q, DENG D H, et al. Effects of chemical and mineral admixtures on the foam indexes of cement-based materials[J]. Case Studies in Construction Materials,2019,11:e00232. doi: 10.1016/j.cscm.2019.e00232
    [26]
    缪昌文, 穆松. 混凝土技术的发展与展望[J]. 硅酸盐通报, 2020, 39(1):1-11.

    MIAO C W, MU S. Development and prospect of concrete technology[J]. Bulletin of the Chinese Ceramic Society,2020,39(1):1-11(in Chinese).
    [27]
    WANG Z P, ZHAO Y T, ZHOU L, et al. Effects of hydroxyethyl methyl cellulose ether on the hydration and compressive strength of calcium aluminate cement[J]. Journal of Thermal Analysis and Calorimetry,2020,140:545-553. doi: 10.1007/s10973-019-08820-6
    [28]
    赵燕茹, 王志慧, 王磊, 等. 冻融循环作用后BFRC宏微观性能的灰熵法分析[J]. 建筑材料学报, 2019, 22(1):45-53. doi: 10.3969/j.issn.1007-9629.2019.01.007

    ZHAO Y R, WANG Z H, WANG L, et al. Grey entropy analysis of macro and micro properties of BFRC after freeze-thaw cycles[J]. Journal of Building Materials,2019,22(1):45-53(in Chinese). doi: 10.3969/j.issn.1007-9629.2019.01.007
    [29]
    POWERS T C. A working hypothesis for further studies of frost resistance of concrete[J]. Journal of the American Concrete Institute,1945,16(4):245-272.
    [30]
    POWERS T C, WILLIS T F. Void spacing as a basis for producing air-entrained concrete[J]. Journal of the American Concrete Institute,1954,50(9):741-760.
    [31]
    张凯, 王起才, 杨子江, 等. 多年冻土区引气混凝土抗压强度及抗冻性研究[J]. 铁道学报, 2019, 41(5):156-161. doi: 10.3969/j.issn.1001-8360.2019.05.019

    ZHANG K, WANG Q C, YANG Z J, et al. Effects of entrained concrete on compressive strength and frost resistance in permafrost regions[J]. Journal of the China Railway Society,2019,41(5):156-161(in Chinese). doi: 10.3969/j.issn.1001-8360.2019.05.019
    [32]
    吴中伟. 混凝土科学技术近期发展方向的探讨[J]. 硅酸盐学报, 1979, 7(3):262-270.

    WU Z W. An approach to the recent trends of concrete science and technology[J]. Journal of the Chinese Ceramic Society,1979,7(3):262-270(in Chinese).
    [33]
    张士萍, 邓敏, 吴建华, 等. 孔结构对混凝土抗冻性的影响[J]. 武汉理工大学学报, 2008, 30(6):56-59.

    ZHANG S P, DENG M, WU J H, et al. Effect of pore structure on the frost resistance of concrete[J]. Journal of Wuhan University of Technology,2008,30(6):56-59(in Chinese).
    [34]
    张德思, 成秀珍. 粉煤灰混凝土抗冻融耐久性的研究[J]. 西北工业大学学报, 2000, 18(2):175-178. doi: 10.3969/j.issn.1000-2758.2000.02.001

    ZHANG D S, CHENG X Z. Research on freeze/thaw durability of PFA concrete[J]. Journal of Northwestern Polytechnical University,2000,18(2):175-178(in Chinese). doi: 10.3969/j.issn.1000-2758.2000.02.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(8)

    Article Metrics

    Article views (936) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return