Volume 38 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
HE Yingge, CHEN Yuanyuan, LIU Weiyi, et al. Preparation of superamphiphobic composite sponge material with super-wetting reversible switching and application in oil-water separation[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 854-862. doi: 10.13801/j.cnki.fhclxb.20200709.001
Citation: HE Yingge, CHEN Yuanyuan, LIU Weiyi, et al. Preparation of superamphiphobic composite sponge material with super-wetting reversible switching and application in oil-water separation[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 854-862. doi: 10.13801/j.cnki.fhclxb.20200709.001

Preparation of superamphiphobic composite sponge material with super-wetting reversible switching and application in oil-water separation

doi: 10.13801/j.cnki.fhclxb.20200709.001
  • Received Date: 2020-05-08
  • Accepted Date: 2020-06-24
  • Available Online: 2020-07-09
  • Publish Date: 2021-03-15
  • The perfluorodecyltrimethoxysilane (PFDMS)-n-decanoic acid (DA)-TiO2 solution was prepared by a simple sol-gel method, and immersed to obtain the PFDMS-DA-TiO2 superamphiphobic sponge. Under the induction of ammonia gas with a mass fraction of 25wt%–28wt%, the surface wettability of the PFDMS-DA-TiO2 sponge is switched from superamphiphobic to superhydrophilic and superoleophobic in air. The surface of the PFDMS-DA-TiO2 sponge before and after modification was characterized by FTIR and SEM, and its chemical composition and surface morphology were analyzed. The effect of the volume ratio of DA on the reversible switching effect of the PFDMS-DA-TiO2 superhydrophilic sponge surface infiltration was studied, and its salt tolerance, friction resistance and oil-water separation performance were tested. The results show that the optimal volume ratio of DA is 5.8%. At this time, the oil-water separation efficiency and flux can reach 99.6% and 4775 L/(m2·h), respectively. After the PFDMS-DA-TiO2 superhydrophilic sponge was subjected to an abrasion test and immersed in 3.5wt% NaCl solution for 12 h, they all exhibit excellent superamphiphobic performance and sponges show high abrasion resistance and salt tolerance. After 20 times of reversibly switching of surface wettability between superamphiphobic and superhydrophobic-superhydrophilic in air induced by ammonia, the two wetting properties can still maintain their own stability, which can be used to effectively separate oil-water mixtures in practical industries.

     

  • loading
  • [1]
    XU Q, XU H, CHEN J R, et al. Graphene and grapheme oxide: Advanced membranes for gas separation and water purification[J]. Inorganic Chemistry Frontiers,2015,46(30):417-424.
    [2]
    GAO J F, XIN S, HUANG X W, et al. Facile preparation of polymer microspheres and fibers with a hollow core and porous shell for oil adsorption and oil/water separation[J]. Applied Surface Science,2018,439:394-404. doi: 10.1016/j.apsusc.2018.01.013
    [3]
    张锦山, 董季玲, 武伟, 等. 特殊浸润性油水分离材料研究进展[J]. 功能材料, 2019, 12(50):12041-12050.

    ZHANG J S, DONG J L, WU W, et al. Research progress on special infiltrating oil-water separation materials[J]. Journal of Function Material,2019,12(50):12041-12050(in Chinese).
    [4]
    WANG B, LIANG W X, GUO Z G, et al. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: A new strategy beyond nature[J]. Chemical Society Reviews,2015,44(1):336-361. doi: 10.1039/C4CS00220B
    [5]
    DAI Y H, CHEN D Y, LI N J, et al. Self-healing and superwettablenanofibrous membranes for efficient separation of oil-in-water emulsions[J]. Journal of Materials Chemistry A,2019,54(4):3648-3660.
    [6]
    WU C, HUANG X Y, WU X F, et al. Mechanically flexible and multifunctional polymer-based graphene foams for elastic conductors and oil-water separators[J]. Advanced Materials,2013,25(39):5658-5662. doi: 10.1002/adma.201302406
    [7]
    MIRSHAHGHASSEMI S, LEAD J R. Oil recovery from water under environmentally relevant conditions using magnetic nanoparticles[J]. Environmental Science & Technology,2015,49(19):729-736.
    [8]
    王鹏伟, 刘明杰, 江雷. 仿生多尺度超浸润界面材料[J]. 物理学报, 2016, 65(18):56-78.

    WANG P W, LIU M J, JIANG L. Bioinspiredmultiscale interfacial materials with superwettability[J]. Acta Physica Sinica,2016,65(18):56-78(in Chinese).
    [9]
    KRISHNAN S, WANG N, OBER C K, et al. Comparison of the fouling release properties of hydrophobic fluorinated hydrophilic PEGylated block copolymer surfaces: Attachment strength of the diatom navicula and the green alga ulva[J]. Biomacromolecules,2006,7(5):1449-1462. doi: 10.1021/bm0509826
    [10]
    李文涛, 雍佳乐, 杨青, 等. 基于特殊浸润性材料的油水分离[J]. 物理化学学报, 2018, 34(5):456-475. doi: 10.3866/PKU.WHXB201709211

    LI W T, YONG J L, YANG Q, et al. Oil-water separation based on the materials with special wettability[J]. Acta Physico-Chimica Sinica,2018,34(5):456-475(in Chinese). doi: 10.3866/PKU.WHXB201709211
    [11]
    XUE Z X, DAO Y Z, LIU N, et al. Special wettable materials for oil/water separation[J]. Journal of Materials Chemistry A,2014,2(8):2445-2460. doi: 10.1039/C3TA13397D
    [12]
    屈孟男, 马利利, 何金梅, 等. 特异润湿型油水分离材料的研究进展[J]. 材料导报, 2017, 31(10):152-161.

    QU M N, MA L L, HE J M, et al. Research progress of specific wetting oil-water separation materials[J]. Materials Review,2017,31(10):152-161(in Chinese).
    [13]
    YANG J, ZHANG Z Z, XU X H, et al. Superhydrophilic-superoleophobic coatings[J]. Journal of Materials Chemistry,2012,22(7):2834-2837.
    [14]
    杨明全. 超亲油材料在油水分离中的应用研究[D]. 大庆: 东北石油大学, 2017.

    YANG M Q. Research on the application of superoleophilic materials for oil/water separation[D]. Daqing: Northeast Petroleum University, 2017(in Chinese).
    [15]
    曾新娟, 王丽, 皮丕辉, 等. 特殊润湿性油水分离材料的开发与研究[J]. 化学进展, 2018, 30(1):73-86. doi: 10.7536/PC170828

    ZENG X J, WANG L, PI P H, et al. Development and research of special wettable oil-water separation materials[J]. Progress in Chemistry,2018,30(1):73-86(in Chinese). doi: 10.7536/PC170828
    [16]
    PAN Q M, WANG M, WANG H B. Separating small amount of water and hydrophobic solvents by novel superhydrophobic copper meshes[J]. Applied Surface Science,2008,254:6002-6006. doi: 10.1016/j.apsusc.2008.03.034
    [17]
    WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial and Engineering Chemistry,1936,28(8):988-994.
    [18]
    DASSIE A, BOXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society,1994,40(40):546-551.
    [19]
    李芝华, 沈玉婷. 一种氟硅烷改性聚丁二烯型聚氨酯水声透声材料及其制备方法: 中国, 109912966[P]. 2019-06-21.

    LI Z H, SHEN Y T. The invention relates to a fluorosilane modified polybutadiene type polyurethane underwater acoustic translucent material and a preparation method thereof: China, 109912966[P]. 2019-06-21(in Chinese)
    [20]
    徐林, 任煜, 张红阳, 等. 碱减量-氟硅烷处理涤纶织物的拒水拒油性[J]. 印染, 2017, 43(18):1-4.

    XU L, REN Y, ZHANG H Y, er al. Water and oil-repellency of polyester fabrics after alkali deweighting-fluoroalkylsilanes treatment[J]. Dyeing and Finishing,2017,43(18):1-4(in Chinese).
    [21]
    ZHOU H M, CHEN R R, LIU Q, et al. Fabrication of ZnO/epoxy resin superhydrophobic coating on AZ31 magnesium alloy[J]. Chemical Engineering Journal,2019,368:261-272. doi: 10.1016/j.cej.2019.02.032
    [22]
    李云涛, 晏华, 汪宏涛, 等. 正癸酸-月桂酸-硬脂酸三元低共熔体系/膨胀石墨复合相变材料的制备与表征[J]. 材料导报, 2017, 31(2):94-99.

    LI Y T, YAN H, WANG H T, et al. Preparation and characterization of decanoic acid-lauric acid-stearic acid temary eutectic mixture/expanded graphene composite phase change material with a low eutectic temperature[J]. Materials Review,2017,31(2):94-99(in Chinese).
    [23]
    YOU Y, ZHANG S Y, WAN L, et al. Preparation of continuous TiO2 fibers by sol-gel method and its photocatalytic degradation on formaldehyde[J]. Applied Surface Science,2012,258(8):3469-3474. doi: 10.1016/j.apsusc.2011.11.099
    [24]
    YANG J, LI D, WANG X, et al. Rapid synthesis of nanocrystalline TiO2/SnO2 binary oxides and their photoinduced decomposition of methyl orange[J]. Journal of Solid State Chemistry,2002,165(1):193-198. doi: 10.1006/jssc.2001.9526
    [25]
    胡佩卓, 刘莲, 王海静, 等. 磷钼酸铵/聚丙烯酸复合凝胶吸附剂的合成及对铯的分离[J]. 核化学与放射化学, 2019, 41(4):362-369.

    HU P Z, LIU L, WANG H J, et al. Synthesis of ammonium phosphomolybdate/polyacrylic acid composite gel adsorbent and separation of cesium[J]. Journal of Nuclear and Radiochemistry,2019,41(4):362-369(in Chinese).
    [26]
    王春会, 李树材. 纳米TiO2/阴离子水性聚氨酯粘合剂的研究[J]. 中国粘合剂, 2006, 15(3):1-3.

    WANG C H, LI S C. Study on nano-TiO2/anionic aqueous polyurethane adhesive[J]. China Adhesives,2006,15(3):1-3(in Chinese).
    [27]
    刘婉颖, 邱宇洪, 刘颖, 等. 纳米TiO2对D16T铝合金微弧氧化膜耐磨性的影响及机理[J]. 表面技术, 2019, 28(10):180-189.

    LIU W Y, QIU Y H, LIU Y, et al. Effect and mechanism of nano-TiO2 on wear resistance of micro-arc oxidation film on D16T aluminium alloy[J]. Surface Technology,2019,28(10):180-189(in Chinese).
    [28]
    LIU S H, HAN G, SHU M H, et al. Monodispersed inorganic/organic hybrid spherical colloids: Versatile synthesis and their gas-triggered reversibly switchable wettability[J]. Journal of Materials Chemical,2010,20(44):10001-10009. doi: 10.1039/c0jm02101f
    [29]
    XU Z G, ZHAO Y, WANG H X, et al. A superamphiphobic coating with an ammonia-triggered transition to superhydrophilic and superoleophobic for oil-water separation[J]. Angewandte Chemie International Edition,2015,54(15):4527-4530.
    [30]
    LI F R, WANG Z R, HUANG S C, et al. Flexible, durable, and unconditioned superoleophobic/superhydrophilic surfaces for controllable transport and oil-water separation[J]. Advanced Funcational Materials,2018,28(20):1706867. doi: 10.1002/adfm.201706867
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (976) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return