Volume 37 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
ZOU Qin, LI Shuang, LI Yanguo, et al. Research progress and prospect of strengthening and toughening WC cemented carbide without metal binder[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2376-2385. doi: 10.13801/j.cnki.fhclxb.20200701.001
Citation: ZOU Qin, LI Shuang, LI Yanguo, et al. Research progress and prospect of strengthening and toughening WC cemented carbide without metal binder[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2376-2385. doi: 10.13801/j.cnki.fhclxb.20200701.001

Research progress and prospect of strengthening and toughening WC cemented carbide without metal binder

doi: 10.13801/j.cnki.fhclxb.20200701.001
  • Received Date: 2020-04-23
  • Accepted Date: 2020-06-05
  • Available Online: 2020-07-02
  • Publish Date: 2020-10-15
  • WC binderless tungsten carbide (BTC) without metal binder which has high hardness, good wear resistance and corrosion resistance, is widely used in the field of tools, wear resistant parts, etc. and has become a research focus in the field of cemented carbide in recent years. However, due to the absence of the addition of metal binder, the grain growth is easy to occur in the sintering process, the densification is difficult to increase, the requirements of sintering method and process are higher and the toughness clearly inferior to the BTC without metal binder. Therefore, some researchers inhibit grain growth and promote its densification by adding nonmetallic binder and adjusting sintering process, so as to effectively improve the performance of BTC materials without metal binder. In this paper, the application of metal oxides, metal carbides, carbon materials and composite reinforcement to enhance the performance of BTC with metal binder are reviewed.

     

  • loading
  • [1]
    KRESSE T, MEINHAED D, BERNTHALER T, et al. Hardness of WC-Co hard metals: Preparation, quantitative microstructure analysis, structure-propery relationship and modelling[J]. International Journal of Refractory Metals and Hard Materials,2018,75:287-293. doi: 10.1016/j.ijrmhm.2018.05.003
    [2]
    WANG Z H, LIU Y W, LIU K, et al. Mechanical properties and microstructure of spark plasma sintered WC- 8wt. %Co-VC-cBN ultrafine grained cemented carbide[J]. Ceramics International,2019,45(17):23658-23665. doi: 10.1016/j.ceramint.2019.08.078
    [3]
    郭涛, 郭世柏, 胡涛, 等. ((W, Mo) C-Al2O3 复合材料室温往复滑动摩擦磨损性能[J]. 金属热处理, 2019, 44(4):22-26.

    GUO T, GUO S B, HU T, et al. Ambient temperature reciprocated sliding wear behavior of (W, Mo)C-Al2O3 composite material[J]. Heart Treatment of Metals,2019,44(4):22-26(in Chinese).
    [4]
    SUN S K, ZHANG G J, WU W W, et al. Reactive spark plasma sintering of binderless WC ceramics at 1 500°C[J]. I Refractory Metals and Hard Materials,2014,43:42-45. doi: 10.1016/j.ijrmhm.2013.10.013
    [5]
    TSAI K M, HSIEH C Y, LU H H. Sintering of binderless tungsten carbide[J]. Ceramics International,2010,36(2):689-692. doi: 10.1016/j.ceramint.2009.10.017
    [6]
    马世博, 邵明杰, 侯瑞东, 等. 碳化钨对真空熔覆铁基复合涂层结构和性能的影响[J]. 燕山大学学报, 2016, 40(2):116-122. doi: 10.3969/j.issn.1007-791X.2016.02.003

    MA S B, SHAO M J, HOU R D, et al. Influence on structure and properties of iron-based composite coating by vacuum cladding with WC[J]. Journal of Yanshan University,2016,40(2):116-122(in Chinese). doi: 10.3969/j.issn.1007-791X.2016.02.003
    [7]
    马进, 马世博, 赵军. 碳化钨对截齿金属陶瓷涂层性能的影响[J]. 燕山大学学报, 2010, 34(1):34-38. doi: 10.3969/j.issn.1007-791X.2010.01.007

    MA J, MA S B, ZHAO J. Influence on properties of pick's ceramic-metal coating by WC[J]. Journal of Yanshan University,2010,34(1):34-38(in Chinese). doi: 10.3969/j.issn.1007-791X.2010.01.007
    [8]
    KORNAUS K, RACZKA M, GUBERNAT A. Pressureless sintering of binderless tungsten carbide[J]. European Ceramic Society,2017,37(15):4567-4576. doi: 10.1016/j.jeurceramsoc.2017.06.008
    [9]
    FOX R T, NILSSON R. Binderless tungsten carbide carbon control with pressureless sintering[J]. Refractory Metals and Hard Materials,2018,76:82-89. doi: 10.1016/j.ijrmhm.2018.05.020
    [10]
    El-ESKANDARANY M S. Fabrication and characterizations of new nanocomposite WC/Al2O3 materials by room temperature ball milling and subsequent consolidation[J]. Alloys and Compounds,2005,391:228-235. doi: 10.1016/j.jallcom.2004.08.064
    [11]
    HUANG S, VANMENNSEL K, BIEST O V D, et al. Pulsed electric current sintering and characterization of ultrafine Al2O3-WC composites[J]. Materials Science and Engineering: A,2010,527(3):584-589. doi: 10.1016/j.msea.2009.08.035
    [12]
    QU H X, ZHU S Z, L1 Q, et al. Influence of sintering temperature and holding time on the densification, phase transformation, microstructure and properties of hot pressing WC-40vol. %Al2O3 composites[J]. Ceramics International,2012,38(2):1371-1380. doi: 10.1016/j.ceramint.2011.09.016
    [13]
    QU H X, ZHU S G, LI Q, et al. Microstructure and mechanical properties of hot-pressing sintered WC-xvol. % Al2O3 composites[J]. Materials Science and Engineering: A,2012,543:96-103. doi: 10.1016/j.msea.2012.02.053
    [14]
    QU H X, ZHU S G. Two step hot pressing sintering of dense fine grained WC-Al2O3 composites[J]. Ceramics International,2013,39(5):5415-5425. doi: 10.1016/j.ceramint.2012.12.049
    [15]
    CHEN W H, LIN H T, NAYAK P K, et al. Material properties of tungsten carbide-alumina composites fabricated by spark plasma sintering[J]. Ceramics International,2014,40(9):15007-15012. doi: 10.1016/j.ceramint.2014.06.102
    [16]
    CHEN W H, LIN H T, NAYAK P K, et al. Sintering behavior and mechanical properties of WC-Al2O3 composites prepared by spark plasma sintering (SPS)[J]. Refractory Metals and Hard Materials,2015,48:414-417. doi: 10.1016/j.ijrmhm.2014.10.016
    [17]
    OH S J, KIM B S, SHO I J. Mechanical properties and rapid consolidation of nanostructured WC and WC-Al2O3 composites by high-frequency induction-heated sintering[J]. Refractory Metals and Hard Materials,2016,58:189-195. doi: 10.1016/j.ijrmhm.2016.04.016
    [18]
    EI-ESKANDARANYM S. Fabrication of nanocrystalline WC and nanocomposite WC-MgO refractory materials at room temperature[J]. Alloys and Compounds,2000,296:175-182. doi: 10.1016/S0925-8388(99)00508-3
    [19]
    EI-ESKANDARANYM S, OMORI M, KONNO T J, et al. Synthesizing of nanocomposite WC/MgO powders by mechanical solid-state reduction and subsequent plasma-activated sintering[J]. Metallurgical and Materials Transactions: A,2001,32:157-164. doi: 10.1007/s11661-001-0111-0
    [20]
    ZHANG M L, ZHU S Z, JUN M, et al. Preparation of WC/MgO composite nanopowders by high-energy reactive ball milling and their plasma-activated sintering[J]. Powder Metallurgy and Metal Ceramics,2008,47(9):525-530.
    [21]
    张梅琳, 朱世根, 赵明威. 烧结工艺对纳米WC/MgO复合材料性能的影响[J]. 热加工工艺, 2010, 39(10):106-109. doi: 10.3969/j.issn.1001-3814.2010.10.032

    ZHANG M L, ZHU S G, ZHAO M W. Effects of sintering process on properties of WC/MgO nano-composite[J]. Material & Heat Treatment,2010,39(10):106-109(in Chinese). doi: 10.3969/j.issn.1001-3814.2010.10.032
    [22]
    张梅琳, 朱世根. 放电等离子烧结合成WC/MgO复合陶瓷断裂性能的研究[J]. 热加工工艺, 2012, 41(8):100-102. doi: 10.3969/j.issn.1001-3814.2012.08.030

    ZHANG M L, ZHU S G. Study on fracture toughness of WC/MgO composite prepared by spark plasma sintering[J]. Material & Heat Treatment,2012,41(8):100-102(in Chinese). doi: 10.3969/j.issn.1001-3814.2012.08.030
    [23]
    MA J, ZHU S G, OUYANG C X. Two-step hot-pressing sintering of nanocomposite WC-MgO compacts[J]. European Ceramic Society,2011,31:1927-1935. doi: 10.1016/j.jeurceramsoc.2011.04.001
    [24]
    RADAJEWSKI M, SCHIMPF C, KRUGER L. Study of processing routes for WC-MgO composites with varying MgO contents consolidated by FAST/SPS[J]. European Ceramic Society,2017,37(5):2031-2037. doi: 10.1016/j.jeurceramsoc.2017.01.005
    [25]
    BONIECKI M, SADOWSKI T, GOLEBIEWSKI P, et al. Mechanical properties of alumina/zirconia composites[J]. Ceramics International,2020,46(1):1033-1039. doi: 10.1016/j.ceramint.2019.09.068
    [26]
    YU W J, ZHENG Y T, YU Y D. Precipitation mechanism and microstructural evolution of Al2O3/ZrO2 (CeO2) solid solution powders consolidated by spark plasma sintering[J]. Science & Technology,2020,41:149-158.
    [27]
    BASU B, LEE J H, KIM D Y. Development of WC-ZrO2 nanocomposites by spark plasma sintering[J]. American Ceramic Society,2004,87(2):317-319. doi: 10.1111/j.1551-2916.2004.00317.x
    [28]
    MALEK O, LAUWERS B, PERZ Y, et al. Processing of ultrafine ZrO2 toughened WC composites[J]. European Ceramic Society,2009,29:3371-3378. doi: 10.1016/j.jeurceramsoc.2009.07.013
    [29]
    ZHENG D, LI X Q, LI Y Y, et al. ZrO2 (3Y) toughened WC composites prepared by spark plasma sintering[J]. Alloys and Compounds,2013,572:62-67. doi: 10.1016/j.jallcom.2013.03.259
    [30]
    陈国清, 赵薇, 任媛媛, 等. 微波烧结WC-ZrO2复合材料的微观组织及增韧机理[J]. 现代技术陶瓷, 2018, 39(4):287-294.

    CHEN G Q, ZHAO W, REN Y Y, et al. Microstructure and toughening mechanism of WC-ZrO2 composites by microwave sintering[J]. Advanced Ceramics,2018,39(4):287-294(in Chinese).
    [31]
    WANG J F, ZUO D W, ZHU L, et al. Effects and influence of Y2O3 addition on the microstructure and mechanical properties of binderless tungsten carbide fabricated by spark plasma sintering[J]. Refractory Metals & Hard Materials,2018,71:167-174.
    [32]
    REN X Y, PENG Z J, WANG C B, et al. Influence of nano-sized La2O3 addition on the sintering behavior and mechanical properties of WC-La2O3 composites[J]. Ceramics International,2015,41:14811-14818. doi: 10.1016/j.ceramint.2015.08.002
    [33]
    XIA X J, LI X Q, LI J M, et al. Microstructure and characterization of WC-2.8wt. %Al2O3-6.8wt. %ZrO2 composites produced by spark plasma sintering[J]. Ceramics International,2016,42:14182-14188. doi: 10.1016/j.ceramint.2016.06.044
    [34]
    ZHENG D H, LI X Q, LI Y Y, et al. Zirconia-toughened WC with/without VC and Cr3C2[J]. Ceramics International,2014,40(1):2011-2016. doi: 10.1016/j.ceramint.2013.07.111
    [35]
    ZHENG D H, LI X Q, AI X, et al. Bulk WC-Al2O3 composites prepared by spark plasma sintering[J]. Refractory Metals and Hard Materials,2012,30:51-56. doi: 10.1016/j.ijrmhm.2011.07.003
    [36]
    KIM H C, KIM D K, KO I Y, et al. Sintering behavior and mechanical properties of binderless WC-TiC produced by pulsed current activated sintering[J]. Ceramic Processing Research,2007,8(2):91-97.
    [37]
    DASH T, NAYAK B B. Tungsten carbide-Titanium carbide composite preparation by arc plasma melting and its characterization[J]. Ceramics International,2019,45(4):4771-4780. doi: 10.1016/j.ceramint.2018.11.170
    [38]
    NINO A, IZU Y, SEKINE T, et al. Effects of TaC and TiC addition on the microstructures and mechanical properties of Binderless WC[J]. Refractory Metals and Hard Materials,2019,82:167-173. doi: 10.1016/j.ijrmhm.2019.04.012
    [39]
    KIM H C, PARK H K, JEONG I K, et al. Sintering of binderless WC-Mo2C hard materials by rapid sintering process[J]. Ceramics International,2008,34:1419-1423. doi: 10.1016/j.ceramint.2007.03.029
    [40]
    HUANG S G, VANMEENSEL K, BIEST O V D, et al. Binderless WC and WC-VC materials obtained by pulsed electric current sintering[J]. Refractory Metals & Hard Materials,2008,26:41-47.
    [41]
    POETSCHKE O, RICHTER V, HOLKE R. Influence and effectivity of VC and Cr3C2 grain growth inhibitors on sintering of binderless tungsten carbide[J]. Refractory Metals and Hard Materials,2012,31:218-223. doi: 10.1016/j.ijrmhm.2011.11.006
    [42]
    SUGIYAMA S, KUDO D, TAIMATSU H. Preparation of WC-SiC whisker composites by hot pressing and their mechanical properties[J]. Materials Transactions,2008,49(7):1644-1649. doi: 10.2320/matertrans.MRA2008019
    [43]
    NINO A, NAKAIBAYASHI Y, SUGIYAMA S, et al. Microstructure and mechanical properties of WC-SiC composites[J]. Materials Transactions,2011,52(8):1641-1645. doi: 10.2320/matertrans.M2011045
    [44]
    TAIMATSU H, SUGIYAMA S, KOMATSU M. Effects of Cr3C2 and V8C7 on the microstructure and mechanical properties of WC-SiC whisker ceramics[J]. Materials Transactions,2009,50(10):2035-2040.
    [45]
    NINO A, TAKAHASHI N, SUGIYAMA S, et al. Effects of carbide grain growth inhibitors on the microstructures and mechanical properties of WC-SiC-Mo2C hard ceramics[J]. Refractory Metals and Hard Materials,2014,43:150-156. doi: 10.1016/j.ijrmhm.2013.11.016
    [46]
    NINO A, NAKAIBAYASHI Y, SUGIYAMA S, et al. Effect of Mo2C addition on the microstructures and mechanical properties of WC-SiC ceramics[J]. Refractory Metals and Hard Materials,2017,64:35-39. doi: 10.1016/j.ijrmhm.2016.12.018
    [47]
    ZHENG D, LI X Q, LI Y Y, et al. In-situ elongated β-Si3N4 grains toughened WC composites prepared by one/two-step spark plasma sintering[J]. Materials Science and Engineering: A,2013,561:445-451. doi: 10.1016/j.msea.2012.10.059
    [48]
    LI Y Y, ZHENG D, LI X Q, et al. Cr3C2 and VC doped WC-Si3N4 composites prepared by spark plasma sintering[J]. Refractory Metals and Hard Materials,2013,41:540-546. doi: 10.1016/j.ijrmhm.2013.07.004
    [49]
    OUYANG C X, ZHU S G, QU H X. VC and Cr3C2 doped WC-MgO compacts prepared by hot-pressing sintering[J]. Materials and Design,2012,40:550-555. doi: 10.1016/j.matdes.2012.04.030
    [50]
    OUYANG C X, ZHU S G, DONG W W. Microstructure and mechanical properties of hot-pressed WC-MgO composites with Cr3C2 or VC addition[J]. Refractory Metals and Hard Materials,2013,41:41-47. doi: 10.1016/j.ijrmhm.2013.01.015
    [51]
    FAN B, ZHU S, HAO D, et al. Influence of MgO whisker addition on microstructures and mechanical properties of WC-MgO composite[J]. Materials Chemistry and Physics,2019,238:121907. doi: 10.1016/j.matchemphys.2019.121907
    [52]
    DONG W W, ZHU S G, WANG Y, et al. Influence of VC and Cr3C2 as grain growth inhibitors on WC-Al2O3 composites prepared by hot press sintering[J]. Refractory Metals and Hard Materials,2014,45:223-229. doi: 10.1016/j.ijrmhm.2014.04.011
    [53]
    FENG W, ZHANG L T, LIU Y S, et al. The improvement in the mechanical and thermal properties of SiC/SiC compo-sites by introducing CNTs into the PyC interface[J]. Materials Science and Engineering: A,2015,637:123-129. doi: 10.1016/j.msea.2015.04.006
    [54]
    BAI T, XIE T. Fabrication and mechanical properties of WC-Al2O3 cemented carbide reinforced by CNTs[J]. Materials Chemistry and Physics,2017,201(1):113-119.
    [55]
    DONG W W, ZHU S G, BAI T, et al. Influence of Al2O3 whisker concentration on mechanical properties of WC-Al2O3 whisker composite[J]. Ceramics International,2015,41(10):13685-13691. doi: 10.1016/j.ceramint.2015.07.167
    [56]
    SUN J L, ZHAO J, NI X, et al. Fabrication of dense nano-laminated tungsten carbide materials doped with Cr3C2/VC through two-step sintering[J]. European Ceramic Society,2018,38(9):3096-3103. doi: 10.1016/j.jeurceramsoc.2018.02.037
    [57]
    SUN J L, ZHAO J, CHEN M J, et al. Determination of microstructure and mechanical properties of VC/Cr3C2 reinforced functionally graded WC-TiC-Al2O3 micro-nano composite tool materials via two-step sintering[J]. Alloys and Compounds,2017,709:197-205. doi: 10.1016/j.jallcom.2017.03.137
    [58]
    SUN J L, ZHAO J, CHEN M J, et al. Multilayer graphene reinforced functionally graded tungsten carbide nano-composites[J]. Materials & Design,2017,134(15):171-180.
    [59]
    ESTILI E, KWON H S, KAWASAKI A, et al. Multiwalled carbon nanotube-reinforced ceramic matrix composites as a promising structural material[J]. Nuclear Materials,2010,398(1-3):244-245. doi: 10.1016/j.jnucmat.2009.10.039
    [60]
    WEI T, FAN Z J, LUO G H, et al. A new structure for multi-walled carbon nanotubes reinforced alumina nanocompo-site with high strength and toughness[J]. Materials Letters,2008,62(4-5):641-644. doi: 10.1016/j.matlet.2007.06.025
    [61]
    郭长虹, 王晗, 高静, 等. SPS 烧结 CNTs/Cu 纳米复合材料的制备与性能[J]. 燕山大学学报, 2020, 44(1):1-10.

    GUO C H, WANG H, GAO J, et al. Preparation and properties of SPS CNTs/Cu nanocomposites[J]. Journal of Yanshan University,2020,44(1):1-10(in Chinese).
    [62]
    郭铁波, 杨庆祥. 碳纳米管复合材料的研究应用现状与展望[J]. 燕山大学学报, 2006, 30(1):30-33. doi: 10.3969/j.issn.1007-791X.2006.01.007

    GUO T B, YANG Q X. Research application and prospect on carbon nanotubes composites[J]. Journal of Yanshan University,2006,30(1):30-33(in Chinese). doi: 10.3969/j.issn.1007-791X.2006.01.007
    [63]
    SHON I J, NA K I, KIM B R, et al. Mechanical properties and consolidation of nanostructured WC-CNT composites by high frequency induction heated sintering[J]. Reviews on Advanced Materials Science,2011,28:9-12.
    [64]
    CAO T, LI X Q, LI J M, et al. Effect of sintering temperature on phase constitution and mechanical properties of WC-1.0 wt% carbon nanotube composites[J]. Ceramics International,2017,44(1):164-169.
    [65]
    AHMAD I, YAZDANI B, ZHU Y. Recent advances on carbon nanotubes and graphene reinforced ceramics nanocomposites[J]. Nanomaterials,2015,5(1):90-114. doi: 10.3390/nano5010090
    [66]
    DUSZA J, MORGIEL J, DUSZOVA A, et al. Microstructure and fracture toughness of Si3N4+graphene platelet composites[J]. European Ceramic Society,2012,32(12):3389-3397. doi: 10.1016/j.jeurceramsoc.2012.04.022
    [67]
    WUW W, GUI J Y, SAI W, et al. The reinforcing effect of graphene nano-platelets on the cryogenic mechanical properties of GNPs/Al2O3 composites[J]. Alloys and Compounds,2016,691:778-785.
    [68]
    ZHANG X X, ZHU S G, DING H, et al. Fabrication and properties of hot-pressing sintered WC-Al2O3 composites reinforced by graphene platelets[J]. Refractory Metals & Hard Materials,2019,82:81-90.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (1115) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return