Volume 38 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
FAN Xinglang, HUANG Junchao, WU Xi, et al. Deformation analysis method of FRP bar/concrete tension members by considering tension stiffening effect[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 932-943. doi: 10.13801/j.cnki.fhclxb.20200623.003
Citation: FAN Xinglang, HUANG Junchao, WU Xi, et al. Deformation analysis method of FRP bar/concrete tension members by considering tension stiffening effect[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 932-943. doi: 10.13801/j.cnki.fhclxb.20200623.003

Deformation analysis method of FRP bar/concrete tension members by considering tension stiffening effect

doi: 10.13801/j.cnki.fhclxb.20200623.003
  • Received Date: 2020-05-11
  • Accepted Date: 2020-06-12
  • Available Online: 2020-06-24
  • Publish Date: 2021-03-15
  • The tension stiffening effect is the premise of accurate evaluation of the deformation and crack width of fiber reinforced polymer composite (FRP) bar/concrete members. An analytical method for determining the deformation of FRP bar/concrete tension member was proposed. A simplified four-linear model based on the modified Eligehausen model (modified BPE model) was presented. The distribution of stress, displacement of FRP bars and concrete and the distribution of bond force, slip between bars and concrete were established. By combining with the cracking criterion of concrete, an algorithm for the deformation of FRP reinforced tensive ties at different loading stages was proposed. After verification by comparing with experimental data in the literature, the effects of different parameters on the tension stiffening were analyzed. Parametric analysis results indicate that concrete strength and reinforcement ratio of FRP bars have a minor impact on the tension stiffening effect. However, the elastic modulus of FRP bars dominates the tension stiffening behavior of FRP reinforced concrete tensile elements.

     

  • loading
  • [1]
    BENMOKRANE B, EL-SALAKAWY E, EL-RAGABY A, et al. Designing and testing of concrete bridge decks reinforced with glass FRP bars[J]. Journal of Bridge Engineering,2006,11(2):217-229. doi: 10.1061/(ASCE)1084-0702(2006)11:2(217)
    [2]
    GANGARAO H V, TALY N, VIJAY P V. Reinforced concrete design with FRP composites[M]. Florida: CRC Press, 2006.
    [3]
    TORRES L, LÓPEZ-ALMANSA F, BOZZO L M. Tension-stiffening model for cracked flexural concrete members[J]. Journal of Structural Engineering,2004,130(8):1242-1251. doi: 10.1061/(ASCE)0733-9445(2004)130:8(1242)
    [4]
    DAI J G, UEDA T, SATO Y, et al. Modeling of tension stiffening behavior in FRP-strengthened RC members based on rigid body spring networks[J]. Computer-Aided Civil and Infrastructure Engineering,2012,27(6):406-418. doi: 10.1111/j.1467-8667.2011.00741.x
    [5]
    STRAMANDINOLI R S B, LA ROVERE H L. An efficient tension-stiffening model for nonlinear analysis of reinforced concrete members[J]. Engineering Structures,2008,30(7):2069-2080. doi: 10.1016/j.engstruct.2007.12.022
    [6]
    BISCHOFF P H, GROSS S, OSPINA C E. The story behind proposed changes to ACI 440 deflection requirements for FRP-reinforced concrete[CD]. New York: Curran Associates, Inc., 2010.
    [7]
    NARAYANAN R S, BEEBY A W. Designers’ guide to EN 1992-1-1 and EN 1992-1-2. Eurocode 2: Design of concrete structures: General rules and rules for buildings and structural fire design[M]. Thomas Telford, 2005.
    [8]
    BISCHOFF P H, PAIXAO R. Tension stiffening and cracking of concrete reinforced with glass fiber reinforced polymer (GFRP) bars[J]. Canadian Journal of Civil Engineering,2004,31(4):579-588. doi: 10.1139/l04-025
    [9]
    BAENA M, TORRES L, TURON A, et al. Analysis of cracking behavior and tension stiffening in FRP reinforced concrete tensile elements[J]. Composites Part B: Engineering,2013,45(1):1360-1367. doi: 10.1016/j.compositesb.2012.07.026
    [10]
    MIGLIETTA P C, GRASSELLI G, BENTZ E C. Finite/discrete element model of tension stiffening in GFRP reinforced concrete[J]. Engineering Structures,2016,111:494-504. doi: 10.1016/j.engstruct.2015.12.037
    [11]
    GHIASSI B, SOLTANI M, RAHNAMAYE S S. Micromechanical modeling of tension stiffening in FRP-strengthened concrete elements[J]. Journal of Composite Materials,2018,52(19):2577-2596. doi: 10.1177/0021998317751248
    [12]
    BAENA M, TURON A, TORRE L, et al. Experimental study and code predictions of fibre reinforced polymer reinforced concrete (FRP RC) tensile members[J]. Composite Structures,2011,93(10):2511-2520. doi: 10.1016/j.compstruct.2011.04.012
    [13]
    VILANOVA I, TORRES L, BAENA M, et al. Experimental study of tension stiffening in GFRP RC tensile members under sustained load[J]. Engineering Structures,2014,79:390-400. doi: 10.1016/j.engstruct.2014.08.037
    [14]
    LIN X S, ZHANG Y X. Evaluation of bond stress-slip models for FRP reinforcing bars in concrete[J]. Composite Structures,2014,104:131-141.
    [15]
    ELIGEHAUSEN R, POPOV E P, BERTERO V V. Local bond stress-slip relationships of deformed bars under generalized excitations: Experimental results and analytical model[R]. Berkeley: Earthquake Engineering Research Center, 1983.
    [16]
    COSENZA E, MANFREDI G, REALFONZO R. Behavior and modeling of bond of FRP rebars to concrete[J]. Journal of Composites for Construction,1997,1(2):40-51. doi: 10.1061/(ASCE)1090-0268(1997)1:2(40)
    [17]
    HARAJLI M H, HOUT M, JALKH W. Local bond stress-slip behavior of reinforcing bars embedded in plain and fiber concrete[J]. ACI Materials Journal,1995,92(4):343-354.
    [18]
    HARAJLI M, HAMAD B, KARAM K. Bond-slip response of reinforcing bars embedded in plain and fiber concrete[J]. Journal of Materials in Civil Engineering,2002,14(6):503-511. doi: 10.1061/(ASCE)0899-1561(2002)14:6(503)
    [19]
    HARAJLI M H. Bond stress-slip model for steel bars in unconfined or steel, FRC, or FRP confined concrete under cyclic loading[J]. Journal of Structural Engineering,2009,135(5):509-518. doi: 10.1061/(ASCE)0733-9445(2009)135:5(509)
    [20]
    GUPTA A K, MAESTRINI S R. Tension-stiffness model for reinforced concrete bars[J]. Journal of Structural Engineering,1990,116(3):769-790. doi: 10.1061/(ASCE)0733-9445(1990)116:3(769)
    [21]
    SOORIYAARACHCHI H, PILAKOUTAS K, BYARS E. Tension stiffening behavior of GFRP-reinforced concrete[C]//Fiber-Reinforced Polymer (FRP) Reinforcement for Concrete Structures. Kansas City: American Concrete Institute, 2005: 975-990.
    [22]
    KHARAL Z. Tension stiffening and cracking behavior of GFRP reinforced concrete[D]. Toronto: University of Toronto, 2014.
    [23]
    ROSSETTI V A, GALEOTA D, GIAMMATTEO M M. Local bond stress-slip relationships of glass fiber reinforced plastic bars embedded in concrete[J]. Materials and Structures,1995,28:340-344. doi: 10.1007/BF02473149
    [24]
    BISCHOFF P H. Effects of shrinkage on tension stiffening and cracking in reinforced concrete[J]. Canadian Journal of Civil Engineering,2001,28(3):363-374. doi: 10.1139/l00-117
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views (1039) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return