Volume 38 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
LIU Chengbao, TANG Fei, ZHU Chen, et al. Preparation and photocatalytic properties of WO3-Ag/graphitic C3N4 Z-scheme composite photocatalyst[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 209-220. doi: 10.13801/j.cnki.fhclxb.20200622.004
Citation: LIU Chengbao, TANG Fei, ZHU Chen, et al. Preparation and photocatalytic properties of WO3-Ag/graphitic C3N4 Z-scheme composite photocatalyst[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 209-220. doi: 10.13801/j.cnki.fhclxb.20200622.004

Preparation and photocatalytic properties of WO3-Ag/graphitic C3N4 Z-scheme composite photocatalyst

doi: 10.13801/j.cnki.fhclxb.20200622.004
  • Received Date: 2020-03-26
  • Accepted Date: 2020-06-05
  • Available Online: 2020-06-23
  • Publish Date: 2021-01-15
  • WO3 nanorods were synthesized by hydrothermal method and WO3-Ag/graphitic C3N4 (g-C3N4) composite photocatalysts were synthesized by simple solvent evaporation and light deposition. The materials were characterized by XRD, SEM and TEM, et al. The results show that the WO3-Ag/g-C3N4 composite photocatalysts can expand the visible light response and effectively inhibit the photogenic electron and hole recombination due to the successful construction of Z-scheme heterojunction. Under the optimal conditions, the catalytic degradation efficiency of Rhodamine B (RhB) in 100 min is up to 96.8%, and the WO3-Ag/g-C3N4 composite photocatalysts have excellent stability. The photocatalytic mechanism indicates that the real active substances in photocatalytic experiments are hydroxyl radical and superoxide radical.

     

  • loading
  • [1]
    ALI I, PARK S, KIM J O. Modeling the photocatalytic reactions of g-C3N4-TiO2 nanocomposites in a recirculating semi-batch reactor[J]. Journal of Alloys and Compounds,2020,821:153498. doi: 10.1016/j.jallcom.2019.153498
    [2]
    ZHANG Q Z, DENG J J, XU Z H, et al. High-efficiency broadband C3N4 photocatalysts: Synergistic effects from upconversion and plasmons[J]. ACS Catalysis,2017,7(9):6225-6234. doi: 10.1021/acscatal.7b02013
    [3]
    WEN J Q, XIE J, CHEN X B, et al. A review on g-C3N4 based phtotocatalysts[J]. Applied Surface Science,2017,391:72-123. doi: 10.1016/j.apsusc.2016.07.030
    [4]
    YANG Y R, QIU M, LI L, et al. A direct Z-scheme van der Waals heterojunction (WO3·H2O/g-C3N4) for highly efficient overall water splitting under visible-light[J]. Solar RRL,2018,2(9):1800148.
    [5]
    ZHAO L Y, XI X L, LIU Y S, et al. Facile synthesis of WO3 micro/nanostructres by paperassisted calcination for visible light driven photocatalysis[J]. Chemical Physics,2020,528(11):515-521.
    [6]
    CUI L F, DING X, WANG Y G, et al. Facile preparation of Z-scheme WO3/g-C3N4 composite photocatalyst with enhanced photocatalytic performance under visible light[J]. Applied Surface Science,2017,391:202-210. doi: 10.1016/j.apsusc.2016.07.055
    [7]
    XIAO T T, TANG Z, YANG Y, et al. Insitu construction of hierarchical WO3 /g-C3N4 composite hollow microsphere Z-Scheme photocatalyst for the degradation of antibiotics[J]. Applied Catalysis B: Environmental,2018,220:417-428. doi: 10.1016/j.apcatb.2017.08.070
    [8]
    KATSUMATA H, TACHIA Y, SUZUKIB T, et al. Z-scheme photocatalytic hydrogen production over WO3/g-C3N4 composite photocatalysts[J]. RSC Advances,2014,4(41):21405-21409.
    [9]
    CHEN J Y, XIAO X Y, WANG Y, et al. Ag nanoparticles decrorated WO3/g-C3N4 2D/2D heterostructure with enhanced photocatalytic activty for oganic pollutants degradation[J]. Applied Surface Science,2018,467:1000-1010.
    [10]
    姚国英, 刘清路, 赵宗彦. 局域表面等离子体共振效应在光催化技术中的应用[J]. 化学进展, 2019, 31(4):516-535.

    YAO Guoying, LIU Qinglu, ZHAO Zongyan. Applications of localized surface plasmon resonance effect in photocatalysis[J]. Progress in Chemistry,2019,31(4):516-535(in Chinese).
    [11]
    QIAN L, HOU Y P, YU Z B, et al. Metal-induced Z-scheme CdS/Ag/g-C3N4 photocatalyst for enhanced hydrogen evolution under visible light: The synergy of MIP effect and electron mediator of Ag[J]. Molecular Catalysis,2018,458:43-51. doi: 10.1016/j.mcat.2018.07.027
    [12]
    HE K L, XIE J, LUO X Y, et al. Enhanced visible light photocatalytic H2 production over Z-scheme g-C3N4 nanosheets/WO3 nanorods nanocomposites loaded with Ni(OH)x cocatalysts[J]. Chinese Journal of Catalysis,2017,38(2):240-252. doi: 10.1016/S1872-2067(17)62759-1
    [13]
    中国国家标准化管理委员会. 光催化纳米材料光解指数测试方法: GB/T 30452—2013[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of of the people’s Republic of China. Measurement method for photolysis performance index of photocatalytic nano-materials: GB/T 30452—2013[S]. Beijing: China Standards Press, 2014(in Chinese).
    [14]
    牟婉君, 谢翔, 李兴亮, 等. 六方相氧化钨的合成及其电催化还原氢的研究[J]. 人工晶体学报, 2014, 43(8):2102-2106. doi: 10.3969/j.issn.1000-985X.2014.08.039

    MU Wanjun, XIE Xiang, LI Xiliang, et al. Synthesis and electrocatalytic reduction for hydrogen of hexagonal WO3[J]. Journal of Synthetic Crystals,2014,43(8):2102-2106(in Chinese). doi: 10.3969/j.issn.1000-985X.2014.08.039
    [15]
    HU K M, ZHANG W M, ZHONG Z Y, et al. Effect of surface layer thickness on buckling and vibration of nonlocal nanowires[J]. Physics Letters A,2014,378(7-8):650-654.
    [16]
    HUANG L Y, XU H, LI Y P, et al. Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity[J]. Dalton Transactions,2013,42(24):8606-8616. doi: 10.1039/c3dt00115f
    [17]
    CHENG C, SHI J W, HU Y C, et al. WO3/g-C3N4 composites: One-pot preparation and enhanced photocatalytic H2 production under visible light irradiation[J]. Nanotechnology,2017,28(16):164002. doi: 10.1088/1361-6528/aa651a
    [18]
    CAO S W, LIU X F, YUAN Y P, et al. Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts[J]. Applied Catalysis B: Environmental,2014,147:940-946. doi: 10.1016/j.apcatb.2013.10.029
    [19]
    XUE J J, MA S S, ZHOU Y M, et al. Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation[J]. ACS Applied Materials & Interfaces,2015,7(18):9630-9637.
    [20]
    CHANG C, FU Y, HU M, et al. Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation[J]. Applied Catalysis B: Environmental,2013,142-143:553-560.
    [21]
    WEI H, MCMASTER W A, TAN Z Y, et al. Mesoporous TiO2/g-C3N4 microspheres with enhanced visible-light photocatalytic activity[J]. The Journal of Physical Chemistry C,2017,121(40):22114-22122. doi: 10.1021/acs.jpcc.7b06493
    [22]
    DING J, LIU Q Q, ZHANG Z Y, et al. Carbon nitride nanosheets decorated with WO3 nanorods: Ultrasonic-assisted facile synthesis and catalytic application in the green manufacture of dialdehydes[J]. Applied Catalysis B: Environmental,2015,165:511-518. doi: 10.1016/j.apcatb.2014.10.037
    [23]
    CHEN Y F, HUANG W X, HE D L, et al. Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible light irradiation[J]. ACS Applied Materials & Interfaces,2014,6(16):14405-14414.
    [24]
    ACHARYA R, PARIDA K. A review on TiO2/g-C3N4 visible-light-responsive photocatalysts for sustainable energy generation and environmental remediation[J]. Journal of Environmental Chemical Engineering,2020,8(4):103896. doi: 10.1016/j.jece.2020.103896
    [25]
    LI X X, WAN T, QIU J Y, et al. In-situ photocalorimetry-fluorescence spectroscopy studies of RhB photocatalysis over Z-scheme g-C3N4@Ag@Ag3PO4 nanocomposites: A pseudo-zero-order rather than a first-order process[J]. Applied Catalysis B: Environmental,2017,217:591-602. doi: 10.1016/j.apcatb.2017.05.086
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article views (1258) PDF downloads(100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return