Volume 38 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
ZHAO Zhongguo, AI Taotao, LIU Guorui, et al. Evolution of conductive network and property regulation of multiwall carbon nanotubes-polyurethane/polypropylene composites[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 770-779. doi: 10.13801/j.cnki.fhclxb.20200622.001
Citation: ZHAO Zhongguo, AI Taotao, LIU Guorui, et al. Evolution of conductive network and property regulation of multiwall carbon nanotubes-polyurethane/polypropylene composites[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 770-779. doi: 10.13801/j.cnki.fhclxb.20200622.001

Evolution of conductive network and property regulation of multiwall carbon nanotubes-polyurethane/polypropylene composites

doi: 10.13801/j.cnki.fhclxb.20200622.001
  • Received Date: 2020-05-08
  • Accepted Date: 2020-06-08
  • Available Online: 2020-06-22
  • Publish Date: 2021-03-15
  • The crystallization, conductivity, tensile properties, and response behavior of multiwall carbon nanotubes-polyurethane/polypropylene (MWCNTs-TPU/PP) composites were prepared by solution -melting method and systematically investigated. The introduction of MWCNTs can improve the conductivity and crystallization properties of the MWCNTs-TPU/PP composites, in which the mass fraction of conductive percolation value is about 1.9wt% and the onset crystallization temperature is increased from 117.5℃ to 131.2℃. Through the combination of resistance meter and temperature control device, the construction and destruction process of conductive network under different thermal treatment temperatures were characterized online. With the increase of thermal treatment temperature from 110℃ to 175℃, the conductivity and crystallinity were improved. The introduction of TPU can significantly reduce the reaction time of MWCNTs-TPU/PP composites to temperature from about 10 min to about 3 min, and the temperature response behavior has been significantly improved. The analysis of tensile data shows that the increase of MWCNTs content can improve the tensile strength and elongation at break of the MWCNTs-TPU/PP composites. When the addition amount of MWCNTs is 2.5wt%, the tensile strength of the MWCNTs-TPU/PP composites increases from ~35 MPa to ~47 MPa. The strain-resistance data shows that the introduction of TPU can improve the returnability of the strain and the stability of the conductive network structure in the process of cyclic tension.

     

  • loading
  • [1]
    SHI Y D, YU H O, LI J, et al. Low magnetic field-induced alignment of nickel particles in segregated poly(L-lactide)/poly(ε-caprolactone)/multi-walled carbon nanotube nanocomposites: Towards remarkable and tunable conductive anisotropy[J]. Chemical Engineering Journal,2018,347:472-482. doi: 10.1016/j.cej.2018.04.147
    [2]
    LIU Y F, FENG L M, CHEN Y F, et al. Segregated polypropylene/cross-linked poly(ethylene-co-1-octene)/multi-walled carbon nanotube nanocomposites with low percolation threshold and dominated negative temperature coefficient effect: Towards electromagnetic interference shielding and thermistor[J]. Composites Science & Technology,2018,159:152-161.
    [3]
    WANG P, ZHOU Y, XU P, et al. Effect of P[MPEGMA-IL] on morphological evolution and conductivity behavior of PLA/PCL blends[J]. Ionics,2019,25(6):3189-3196.
    [4]
    MILLER C L, STAFFORD G, SIGMON N, et al. Conductive nonwoven carbon nanotube-PLA composite nanofibers towards wound sensors via solution blow spinning[J]. IEEE Transactions on NanoBioscience,2019,18(2):244-247. doi: 10.1109/TNB.2019.2901140
    [5]
    蒋秋月, 李浚松, 廖霞. 热塑性聚氨酯/石墨烯气凝胶导电复合材料的制备及性能[J]. 高分子材料科学与工程, 2019, 35(8):42-48.

    JIANG Qiuyue, LI Junsong, LIAO Xia. Fabrication of thermoplastic polyurethane/graphene aerogel composites with high electrical conductivity[J]. Polymer Materials Science and Engineering,2019,35(8):42-48(in Chinese).
    [6]
    赵梁成, 李斌, 武思蕊, 等. 功能三维石墨烯-多壁碳纳米管/热塑性聚氨酯复合材料的制备及性能[J]. 复合材料学报, 2020, 37(2):242-251.

    ZHAO Liangcheng, LI Bin, WU Sirui, et al. Preparation and properties of 3D graphene-multi walled carbon nanotube/thermoplastic polyurethane composites[J]. Acta Materiae Compositae Sinica,2020,37(2):242-251(in Chinese).
    [7]
    周浪, 王涛. 石墨烯/功能聚合物复合材料[J]. 复合材料学报, 2020, 37(5):997-1014.

    ZHOU Lang, WANG Tao. Graphene/functional polymer composites[J]. Acta Materiae Compositae Sinica,2020,37(5):997-1014(in Chinese).
    [8]
    PANG H, ZHANG Y C, CHEN T, et al. Tunable positive temperature coefficient of resistivity in an electrically conducting polymer/graphene composite[J]. Applied Physics Letters,2010,96(25):251907.
    [9]
    XIU H, ZHOU Y, DAI J, et al. Formation of new electric double percolation via carbon black induced co-continuous like morphology[J]. RSC Advances,2014,4(70):37193-37196. doi: 10.1039/C4RA06836J
    [10]
    TRUNG T Q, TIEN N T, KIM D, et al. High thermal responsiveness of a reduced graphene oxide field-effect transistor[J]. Advanced Materials,2012,24(38):5254-5260. doi: 10.1002/adma.201201724
    [11]
    ZHANG R, DENG H, VALENCA R, et al. Strain sensing behaviour of elastomeric composite films containing carbon nanotubes under cyclic loading[J]. Composites Science & Technology,2013,74(1):1-5.
    [12]
    FENG J, CHAN C M. Electrical properties of carbon black-filled polypropylene/ultra-high molecular weight polyethylene composites[M]//RUPPRECHT L. Conductive polymers and plastics. William Andrew, 1999: 219-224.
    [13]
    KIRKPATRICK S. Percolation and conduction[J]. Review of Modern Physics,1973,45(4):574-588. doi: 10.1103/RevModPhys.45.574
    [14]
    LAN Y, LIU H, CAO X, et al. Electrically conductive thermoplastic polyurethane/polypropylene nano-composites with selectively distributed graphene[J]. Polymer,2016,97:11-19. doi: 10.1016/j.polymer.2016.05.017
    [15]
    RYSZKOWSKA J. Quantitative image analysis of polyurethane/carbon nanotube composite micostructures[J]. Materials Characterization,2009,60(10):1127-1132. doi: 10.1016/j.matchar.2009.01.021
    [16]
    ESWARAIAH V, BALASUBRAMANIAM K, RAMAPRABHU S. One-pot synthesis of conducting graphene-polymer composites and their strain sensing application[J]. Nanoscale,2012,4(4):1258-1250. doi: 10.1039/c2nr11555g
    [17]
    JIA X, ZHANG J, GAO W, et al. Preparation of chitosan/PLA blend micro/nanofibers by electrospinning[J]. Materials Letters,2009,63(8):658-660. doi: 10.1016/j.matlet.2008.12.014
    [18]
    KU-HERRERA J J, AVILES F. Cyclic tension and compression piezo resistivity of carbon nanotube/vinyl ester composites in the elastic and plastic regimes[J]. Carbon,2012,50(7):2592-2598. doi: 10.1016/j.carbon.2012.02.018
    [19]
    OGASAWARA T, TSUDA T, TAKEDA N. Stress-strain behavior of multi-walled carbon nanotube/PEEK composites[J]. Composites Science and Technology,2011,71(2):73-78. doi: 10.1016/j.compscitech.2010.10.001
    [20]
    SU J, ZHAO Z Z, HUANG Y, et al. Thermal oxidative and ozone oxidative stabilization effect of hybridized functional graphene oxide in silica filled solution styrene butadiene elastomer[J]. Physical Chemistry Chemical Physics,2016,18(42):29423-29434. doi: 10.1039/C6CP03916B
    [21]
    ZHANG K, PENG J K, SHI U D, et al. Crystalline morphology of poly(L-lactide) by addition of high-melting-point poly(L-lactide) and its effect on the distribution of multiwalled carbon nanotubes[J]. Journal of Physical Chemistry B,2016,120(3):7423-7437.
    [22]
    YESIL S, BAYRAM G. Effect of carbon nanotube surface treatment on the morphology, electrical, and mechanical properties of the microfiber-reinforced polyethylene/poly(ethylene terephthalate)/carbon nanotube composites[J]. Journal of Applied Polymer Science,2013,127(2):982-991. doi: 10.1002/app.37518
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (1476) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return