Volume 38 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
ZHANG Jiongjiong, YUAN Xi, YAN Mingyang, et al. Effect of ambient temperature on the properties of piezoelectric fiber composites[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 583-590. doi: 10.13801/j.cnki.fhclxb.20200617.001
Citation: ZHANG Jiongjiong, YUAN Xi, YAN Mingyang, et al. Effect of ambient temperature on the properties of piezoelectric fiber composites[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 583-590. doi: 10.13801/j.cnki.fhclxb.20200617.001

Effect of ambient temperature on the properties of piezoelectric fiber composites

doi: 10.13801/j.cnki.fhclxb.20200617.001
  • Received Date: 2020-04-13
  • Accepted Date: 2020-06-06
  • Available Online: 2020-06-17
  • Publish Date: 2021-02-15
  • As the piezoelectric fiber composites have exhibited important applications in the areas of aerospace and aviation, it is necessary to investigate the effects of extreme environmental temperatures on their properties. In this study, the lead zirconate titanate (PAT) piezoelectric fiber composite was prepared, and the electrical impedance, free strain, actuation performance and mechanical properties of piezoelectric fiber composite were tested at different ambient temperatures. The results show that the phase angle difference of piezoelectric fiber composite changes at different ambient temperatures. Both the free strain and the actuation performance of piezoelectric fiber composite increase at first and then decrease as the ambient temperature increases. When the ambient temperature is 20℃, the longitudinal strain of the sample is 604.0×10−6, and the tip displacement generated by driving the aluminum plate is 0.789 mm. The maximum longitudinal free strains of the samples at −88℃ and 80℃ are reduced to 46.9% and 51.3% respectively, comparing with the value at 20℃, while the tip displacements are reduced to 79.6% and 83.7% respectively. When the ambient temperature increases from −88℃ to 80℃, the mechanical properties of piezoelectric fiber composites also increase.

     

  • loading
  • [1]
    宋维力. 智能电磁材料与结构综述[J]. 表面技术, 2020, 49(2):12-17.

    SONG W L. Review of smart electromagnetic materials and structures[J]. Surface Technology,2020,49(2):12-17(in Chinese).
    [2]
    王希晰, 曹茂盛. 低维电磁功能材料研究进展[J]. 表面技术, 2020, 49(2):18-28.

    WANG X X, CAO M S. Low-dimensional electromagnetic functional materials[J]. Surface Technology,2020,49(2):18-28(in Chinese).
    [3]
    沈星, 冯伟, 李仁. 具有大驱动位移的复合结构型PZT压电陶瓷[J]. 复合材料学报, 2005, 22(6):44-48. doi: 10.3321/j.issn:1000-3851.2005.06.008

    SHEN X, FENG W, LI R. Large-displacement PZT piezoelectrics with composite structure[J]. Acta Materiae Compositae Sinica,2005,22(6):44-48(in Chinese). doi: 10.3321/j.issn:1000-3851.2005.06.008
    [4]
    HAGOOD N W, KINDEL R, GHANDI K, et al. Improving transverse actuation of piezoceramics using interdigitated surface electrodes[C]//Smart Structures and Materials 1993: Smart Structures and Intelligent Systems. Albuquerque: SPIE, 1993: 341-352.
    [5]
    BILGEN O, FLORES E I, FRISWELL M I. Optimization of surface-actuated piezocomposite variable-camber morphing wings[C]//ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Scottsdale: ASME, 2011: 315-322.
    [6]
    BILGEN O, KOCHERSBERGER K B, INMAN D J. Novel, bi-directional, variable camber airfoil via macro-fiber composite actuators[J]. Journal of Aircraft,2010,47(1):303-314. doi: 10.2514/1.45452
    [7]
    THIEN A B, CHIAMORI H C, CHING J T, et al. The use of macro-fibre composites for pipeline structural health assessment[J]. Structural Control & Health Monitoring,2010,15(1):43-63.
    [8]
    WANG X M, ZHOU W Y, XUN G B, et al. Dynamic shape control of piezocomposite-actuated morphing wings with vibration suppression[J]. Journal of Intelligent Material Systems and Structures,2018,29(3):358-370. doi: 10.1177/1045389X17708039
    [9]
    CHAI Y Y, SONG Z G, LI F M. Active aerothermoelastic flutter suppression of composite laminated panels with time-dependent boundaries[J]. Composite Structures,2017,179:61-76. doi: 10.1016/j.compstruct.2017.07.053
    [10]
    SHI Y, HALLETT S R, ZHU M L. Energy harvesting behaviour for aircraft composites structures using macro-fibre composite: Part I-Integration and experiment[J]. Compo-site Structures,2017,160:1279-1286. doi: 10.1016/j.compstruct.2016.11.037
    [11]
    PLACZEK M, KOKOT G. Modelling and laboratory tests of the temperature influence on the efficiency of the energy harvesting system based on MFC piezoelectric transducers[J]. Sensors,2019,19(7):1558. doi: 10.3390/s19071558
    [12]
    LIN X J, ZHOU K C, BUTTON T W, et al. Fabrication, characterization and modeling of piezoelectric fiber compo-sites[J]. Journal of Applied Physics,2013,114(2):027015. doi: 10.1063/1.4812224
    [13]
    陈子琪, 朱松, 林秀娟, 等. 纤维厚度和体积分数对压电纤维复合物应变性能的影响[J]. 无机材料学报, 2015, 30(6):571-575. doi: 10.15541/jim20140565

    CHEN Z Q, ZHU S, LIN X J, et al. Effects of fiber thickness and volume fraction on the strain performance of piezoelectric fiber composites[J]. Journal of Inorganic Materials,2015,30(6):571-575(in Chinese). doi: 10.15541/jim20140565
    [14]
    陈海燕, 林秀娟, 陈子琪, 等. TiO2含量对压电纤维复合材料抗拉及驱动应变性能的影响[J]. 无机材料学报, 2015, 30(2):165-170. doi: 10.15541/jim20140269

    CHEN H Y, LIN X J, CHEN Z Q, et al. Influence of TiO2 content on the tensile and actuation properties of piezoelectric fiber composites[J]. Journal of Inorganic Materials,2015,30(2):165-170(in Chinese). doi: 10.15541/jim20140269
    [15]
    WU M L, YUAN X, LUO H, et al. Enhanced actuation performance of piezoelectric fiber composites induced by incorporated BaTiO3 nanoparticles in epoxy resin[J]. Physics Letters A,2017,381(19):1641-1647. doi: 10.1016/j.physleta.2017.02.025
    [16]
    BOWEN C R, NELSON L J, STEVENS R, et al. Optimisation of interdigitated electrodes for piezoelectric actuators and active fiber composites[J]. Journal of Electroceramics,2006,16(4):263-269. doi: 10.1007/s10832-006-9862-8
    [17]
    PANDEY A, AROCKIARAJAN A. Fatigue study on the actuation performance of macro fiber composite (MFC): Theoretical and experimental approach[J]. Smart Materials and Structures,2017,26(3):035018. doi: 10.1088/1361-665X/aa59e9
    [18]
    HENSLEE I A, MILLER D A, TEMPERO T. Fatigue life characterization for piezoelectric macrofiber composites[J]. Smart Materials and Structures,2012,21(10):105037. doi: 10.1088/0964-1726/21/10/105037
    [19]
    HOBECK J D, OWEN R B, INMAN D J. Residual thermal effects in macro fiber composite actuators exposed to persistent temperature cycling[J]. Applied Physics Letters,2016,108(11):111901. doi: 10.1063/1.4943947
    [20]
    KUNGL H, HOFFMANN M J. Temperature dependence of poling strain under high electric fields in LaSr-doped morphotropic PZT and its relation to change in structural characteristics[J]. Acta Materialia,2007,55(17):5780-5791. doi: 10.1016/j.actamat.2007.06.035
    [21]
    WEBBER K G, AULBACH E, KEY T, et al. Temperature-dependent ferroelastic switching of soft lead zirconate titanate[J]. Acta Materialia,2009,57(15):4614-4623. doi: 10.1016/j.actamat.2009.06.037
    [22]
    SENOUSYM S, RAJAPAKSE R K, GADALA M S. A temperature-dependent two-step domain-switching model for ferroelectric materials[J]. Acta Materialia,2009,57(20):6135-6145. doi: 10.1016/j.actamat.2009.08.039
    [23]
    ZHOU C R, LIU X Y. Effect of B-site substitution of complex ions on dielectric and piezoelectric properties in (Bi1/2Na1/2)TiO3 piezoelectric ceramics[J]. Materials Chemistry & Physics,2008,108(3):413-416.
    [24]
    HOOKER M W. Properties of PZT-based piezoelectric ceramics between −150 and 250℃, NASA/CR-1998-208708[R]. Washington: NASA, 1998.
    [25]
    ATITALLAH H B, OUNAIES Z, MULIANA A. Temperature and time dependence of the electro-mechanical properties of flexible active fiber composites[J]. Smart Materials and Structures,2016,25(4):045002. doi: 10.1088/0964-1726/25/4/045002
    [26]
    MASYS A J, REN W, YANG G, et al. Piezoelectric strain in lead zirconate titante ceramics as a function of electric field, frequency, and dc bias[J]. Journal of Applied Physics,2003,94(2):1155-1162. doi: 10.1063/1.1587008
    [27]
    DRAGAN D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics[J]. Reports on Progress in Physics,1998,61:1267-1324. doi: 10.1088/0034-4885/61/9/002
    [28]
    HALL D A. Review nonlinearity in piezoelectric ceramics[J]. Journal of Materials Science,2001,36:4575-4601. doi: 10.1023/A:1017959111402
    [29]
    LI B, CAO M S, LIU J, et al. Domain structure and enhanced electrical properties in sodium bismuth titanate ceramics sintered from crystals with different morphologies[J]. Journal of the American Ceramic Society,2016,99(7):2316-2326. doi: 10.1111/jace.14211
    [30]
    ZOU D J, DU C C, LIU T J, et al. Effects of temperature on the performance of the piezoelectric-based smart aggregates active monitoring method for concrete structures[J]. Smart Materials and Structures,2019,28(3):035016. doi: 10.1088/1361-665X/aafe15
    [31]
    SHARMA S, VIG R, KUMAR N. Temperature compensation in a smart structure by application of DC bias on piezoelectric patches[J]. Journal of Intelligent Material Systems and Structures,2016,27(18):2524-2535. doi: 10.1177/1045389X16633769
    [32]
    BRUNNER A J, BIRCHMEIER M, MELNYKOWYCZ M M, et al. Piezoelectric fiber composites as sensor elements for structural health monitoring and adaptive material systems[C]//6th International Conference on Advanced Composites. Greece: Journal of Intelligent Material Systems and Structures, 2009: 1045-1055.
    [33]
    WANG X Y, YUAN X, WU M L, et al. Effect of epoxy resin on the actuating performance of piezoelectric fiber compo-sites[J]. Sensors,2019,19(8):1809. doi: 10.3390/s19081809
    [34]
    NELSON L J, BOWEN C R, STEVENS R, et al. Modelling and measurement of piezoelectric fibres and interdigitated electrodes for the optimisation of piezofibre compo-sites[C]//Smart Structures and Materials 2003 Conference. San Diego: SPIE, 2003: 556-567.
    [35]
    刘新, 武湛君, 何辉永, 等. 单向碳纤维增强树脂基复合材料的超低温力学性能[J]. 复合材料学报, 2017, 34(11):2437-2445.

    LIU X, WU Z J, HE H Y, et al. Cryogenic mechanical properties of unidirectional carbon fiber reinforced epoxy composite[J]. Acta Materiae Compositae Sinica,2017,34(11):2437-2445(in Chinese).
    [36]
    LI H, CHEN G, SU H, et al. Effect of the stoichiometric ratio on the crosslinked network structure and cryogenic properties of epoxy resins cured at low temperature[J]. European Polymer Journal,2019,112:792-798. doi: 10.1016/j.eurpolymj.2018.10.051
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (1155) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return