Volume 38 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
ZHANG Qingfa, XU Hang, REN Xiajin, et al. Preparation and properties of agroforestry wastes biochar/high density polyethylene composites[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 398-405. doi: 10.13801/j.cnki.fhclxb.20200610.004
Citation: ZHANG Qingfa, XU Hang, REN Xiajin, et al. Preparation and properties of agroforestry wastes biochar/high density polyethylene composites[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 398-405. doi: 10.13801/j.cnki.fhclxb.20200610.004

Preparation and properties of agroforestry wastes biochar/high density polyethylene composites

doi: 10.13801/j.cnki.fhclxb.20200610.004
  • Received Date: 2020-04-23
  • Accepted Date: 2020-05-29
  • Available Online: 2020-06-10
  • Publish Date: 2021-02-15
  • Rice husk biochar and poplar biochar were prepared from rice husk and poplar at 600 °C in this study. Rice husk, rice husk biochar, poplar and poplar biochar were used to reinforce high density polyethylene (HDPE) to prepare composites, and properties of the composites were tested and analyzed respectively. The results show that higher carbon content, higher specific surface area and more developed pore structure are obtained in rice husk biochar and poplar biochar than rice husk and poplar. The flexural strength, flexural modulus, tensile strength and tensile modulus of rice husk biochar/HDPE composites are 34.95 MPa, 1.76 GPa, 26.25 MPa, 1.83 GPa, higher than those of rice husk/HDPE composites. Similarly, the flexural strength, flexural modulus, tensile strength and tensile modulus of poplar biochar are 40.14 MPa, 2.43 GPa, 30.64 MPa, 2.17 GPa, higher than those of poplar/HDPE composites. Besides, the creep resistance and anti-stress relaxation ability of rice husk biochar/HDPE composites and poplar/HDPE composites are also stronger than rice husk/HDPE composites and poplar/HDPE composites. The results of this study suggest that the mechanical properties of biochar/HDPE composites are better than biomass/HDPE composites, which can provide new ideas for the high value utilization of agroforestry wastes.

     

  • loading
  • [1]
    王清文, 易欣, 沈静. 木塑复合材料在家具制造领域的发展机遇[J]. 林业工程学报, 2016, 1(3):1-8.

    WANG Q W, YI X, SHEN J. Tailoring wood-plastic compo-sites for furniture production: Possibilities and opportunities[J]. China Forestry Science and Technology,2016,1(3):1-8(in Chinese).
    [2]
    YIN H, SYPASEUTH F D, SCHUBERT M, et al. Routes to halogen-free flame-retardant polypropylene wood plastic composites[J]. Polymers for Advanced Technologies,2019,30(1):187-202. doi: 10.1002/pat.4458
    [3]
    张庆法, 高巧春, 林晓娜, 等. 木质素磺酸钙/高密度聚乙烯复合材料的力学性能[J]. 复合材料学报, 2019, 36(3):630-637.

    ZHANG Q F, GAO Q C, LIN X N, et al. Mechanical properties of calcium lignosulfonate/high density polyethylene composites[J]. Acta Materiae Compositae Sinica,2019,36(3):630-637(in Chinese).
    [4]
    RATANAWILAI T, TANEERAT K. Alternative polymeric matrices for wood-plastic composites: Effects on mechanical properties and resistance to natural weathering[J]. Construction and Building Materials,2018,172:349-357. doi: 10.1016/j.conbuildmat.2018.03.266
    [5]
    朱碧华, 何春霞, 石峰, 等. 三种壳类植物纤维/聚氯乙烯复合材料性能比较[J]. 复合材料学报, 2017, 34(2):291-297.

    ZHU B H, HE C X, SHI F, et al. Performance comparison of three kinds of husk’s fibers/polyvinyl chloride composites[J]. Acta Materiae Compositae Sinica,2017,34(2):291-297(in Chinese).
    [6]
    MOHANTY A K, VIEKANANDHAN S, PIN J M, et al. Composites from renewable and sustainable resources: Challenges and innovations[J]. Science,2018,362(6414):536-542. doi: 10.1126/science.aat9072
    [7]
    郝建秀, 杜凤, 王伟宏. 短切碳纤维表面处理对木粉/高密度聚乙烯复合材料性能的影响[J]. 复合材料学报, 2018, 35(2):298-303.

    HAO J X, DU F, WANG W H. Effect of surface treatment of short carbon fibers on the properties of wood flour/high density polyethylene composite[J]. Acta Materiae Compositae Sinica,2018,35(2):298-303(in Chinese).
    [8]
    DAS O, SARMAH A K, BHATTACHARYYA D. A novel approach in organic waste utilization through biochar addition in wood/polypropylene composites[J]. Waste Management,2015,38:132-140. doi: 10.1016/j.wasman.2015.01.015
    [9]
    DEVALLANCE D B, OPORTO G S, QUIGLEY P. Investigation of hardwood biochar as a replacement for wood flour in wood-polypropylene composites[J]. Journal of Elastomers & Plastics,2016,48(6):510-522.
    [10]
    WANG J, WANG S. Preparation, modification and environmental application of biochar: A review[J]. Journal of Cleaner Production,2019,227:1002-1022. doi: 10.1016/j.jclepro.2019.04.282
    [11]
    YANG D P, LI Z, LIU M, et al. Biomass-derived carbonaceous materials: Recent progress in synthetic approaches, advantages, and applications[J]. ACS Sustainable Chemistry & Engineering,2019,7(5):4564-4585.
    [12]
    POULOSE A M, ELNOUR A Y, ANIS A, et al. Date palm biochar-polymer composites: An investigation of electrical, mechanical, thermal and rheological characteristics[J]. Science of the Total Environment,2018,619:311-318.
    [13]
    BAJWA D S, ADHIKARI S, SHOJAEIARANI J, et al. Characterization of bio-carbon and ligno-cellulosic fiber reinforced bio-composites with compatibilizer[J]. Construction and Building Materials,2019,204:193-202. doi: 10.1016/j.conbuildmat.2019.01.068
    [14]
    BEHAZIN E, MISRA M, MOHANTY A K. Sustainable biocarbon from pyrolyzed perennial grasses and their effects on impact modified polypropylene biocomposites[J]. Composites Part B: Engineering,2017,118:116-124. doi: 10.1016/j.compositesb.2017.03.003
    [15]
    CLAOSTON N, SAMSURI A W, AHMAD HUSINI M H, et al. Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars[J]. Waste Management & Research,2014,32(4):331-339.
    [16]
    MITTAL G, RHEE K Y, MISKOVIC S V, et al. Reinforcements in multi-scale polymer composites: Processing, properties, and applications[J]. Composites Part B: Engineering,2018,138:122-139. doi: 10.1016/j.compositesb.2017.11.028
    [17]
    DAS O, BHATTACHARYYA D, SARMAH A K. Sustainable eco-composites obtained from waste derived biochar: A consideration in performance properties, production costs, and environmental impact[J]. Journal of Cleaner Production,2016,129:159-168. doi: 10.1016/j.jclepro.2016.04.088
    [18]
    QIAN S, TAO Y, RUAN Y, et al. Ultrafine bamboo-char as a new reinforcement in poly (lactic acid)/bamboo particle biocomposites: The effects on mechanical, thermal, and morphological properties[J]. Journal of Materials Research,2018,33(22):3870-3879. doi: 10.1557/jmr.2018.290
    [19]
    ZHANG Q, LI Y, CAI H, et al. Properties comparison of high density polyethylene composites filled with three kinds of shell fibers[J]. Results in Physics,2019,12:1542-1546. doi: 10.1016/j.rinp.2018.09.054
    [20]
    张庆法, 蔡红珍, 周亮, 等. 含炭量对木炭/聚丙烯复合材料性能的影响[J]. 农业工程学报, 2018, 34(23):254-259. doi: 10.11975/j.issn.1002-6819.2018.23.033

    ZHANG Q F, CAI H Z, ZHOU L, et al. Effect of charcoal content on properties of charcoal/polypropylene compo-sites[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(23):254-259(in Chinese). doi: 10.11975/j.issn.1002-6819.2018.23.033
    [21]
    LI S, HUANG A, CHEN Y J, et al. Highly filled biochar/ultra-high molecular weight polyethylene/linear low density polyethylene composites for high-performance electromagnetic interference shielding[J]. Composites Part B: Engineering,2018,153:277-284. doi: 10.1016/j.compositesb.2018.07.049
    [22]
    HADDAR M, ELLOUMI A, KOUBAA A, et al. Synergetic effect of posidonia oceanica fibres and deinking paper sludge on the thermo-mechanical properties of high density polyethylene composites[J]. Industrial Crops and Products,2018,121:26-35. doi: 10.1016/j.indcrop.2018.04.075
    [23]
    张庆法, 杨科研, 蔡红珍, 等. 稻壳/高密度聚乙烯复合材料与稻壳炭/高密度聚乙烯复合材料性能对比[J]. 复合材料学报, 2018, 35(11):3044-3050.

    ZHAGN Q F, YANG K Y, CAI H Z, et al. Comparison of properties between rice husk/high density polyethylene and rice husk biochar/high density polyethylene compo-sites[J]. Acta Materiae Compositae Sinica,2018,35(11):3044-3050(in Chinese).
    [24]
    DAVIS A M, HANZLY L E, DEBUTTS B L, et al. Characterization of dimensional stability in flax fiber reinforced polypropylene composites[J]. Polymer Composites,2019,40(1):132-140. doi: 10.1002/pc.24614
    [25]
    GEZAHEGN S, LAI R, HUANG L, et al. Porous graphitic biocarbon and reclaimed carbon fiber derived environmentally benign lightweight composites[J]. Science of the Total Environment,2019,664:363-373. doi: 10.1016/j.scitotenv.2019.01.408
    [26]
    姚文超, 钱少平, 盛奎川, 等. 超微竹炭增强聚丙烯复合材料的制备与性能[J]. 复合材料学报, 2017, 34(12):2661-2667.

    YAO W C, QIAN S P, SHENG K C, et al. Fabrication and properties of polypylene matrix composites reinforced by ultrafine bamboo-char[J]. Acta Materiae Compositae Sinica,2017,34(12):2661-2667(in Chinese).
    [27]
    ABDELWAHAB M A, RODRIGUEZ U A, MISRA M, et al. Injection molded novel biocomposites from polypropylene and sustainable biocarbon[J]. Molecules,2019,24(22):4026-4044. doi: 10.3390/molecules24224026
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (1194) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return