Volume 38 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
GU Fuwei, GU Zhouyue, ZHU Xiaolei, et al. Design and hydraulic tests of a metal liner composite overwrapped pressure vessels with seamless connection technology[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 198-208. doi: 10.13801/j.cnki.fhclxb.20200603.005
Citation: GU Fuwei, GU Zhouyue, ZHU Xiaolei, et al. Design and hydraulic tests of a metal liner composite overwrapped pressure vessels with seamless connection technology[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 198-208. doi: 10.13801/j.cnki.fhclxb.20200603.005

Design and hydraulic tests of a metal liner composite overwrapped pressure vessels with seamless connection technology

doi: 10.13801/j.cnki.fhclxb.20200603.005
  • Received Date: 2020-03-16
  • Accepted Date: 2020-06-02
  • Available Online: 2020-06-03
  • Publish Date: 2021-01-15
  • In industries such as aerospace, automobile, and petro-chemical, the composite overwrapped pressure vessels (COPV) have become a popular technique with the features of high stiffness-to-weight ratios and the advantages of leak-before-break. Based on the characteristics of filament winding process, a new technology of weldless connection of metal-lined COPV was proposed. The new technology used filament winding technology instead of welding forming process and designed a sealing groove on skirt length of the head to solve the problems of continuity and sealing between the head and the cylinder body. And an auxiliary forming tool was invented to apply filament winding process on this novel liner structure successfully. Then, the feasibility of the new structure was verified by hydraulic test. And the vessel could withstand the blasting design pressure about 110 MPa. Three damage modes were obtained by macroscopically inspecting of the vessel profile. Finally, based on a Chang-Chang failure criterion and the cohesive model, the finite element model of the novel structure was established by writing a user material subroutine VUMAT. The results show the delamination damage is the main damage mode and the fiber tensile fracture at the transition region of the head and cylinder is the main failure mode of the novel structure.

     

  • loading
  • [1]
    郭凯特, 王春, 文立华, 等. 不等开口纤维增强树脂复合材料缠绕壳体非测地线线型设计[J]. 复合材料学报, 2019, 36(5):1189-1199.

    GUO Kaite, WANG Chun, WEN Lihua, et al. Winding pattern design of fiber reinforced resin polymer composites winding vessels with unequal pollar openings based on non-geodesics[J]. Acta Materiae Compositae Sinica,2019,36(5):1189-1199(in Chinese).
    [2]
    杨斌, 胡超杰, 轩福贞, 等. 多壁碳纳米管界面传感器及其在纤维缠绕压力容器原位监测中的应用[J]. 复合材料学报, 2020, 37(2):336-344.

    YANG Bin, HU Chaojie, XUAN Fuzhen, et al. Multi-walled carbon nanotube interfacial sensor and its application in in-situ monitoring of the filament wound pressure vessel[J]. Acta Materiae Compositae Sinica,2020,37(2):336-344(in Chinese).
    [3]
    周威威. 复合材料气瓶内衬稳定性分析及爆破压力研究[D]. 杭州: 浙江大学, 2013.

    ZHOU Weiwei. Internal liner stability analysis and burst pressure study of composite pressure vessel[D]. Hangzhou: Zhejiang University, 2013(in Chinese).
    [4]
    陈小平, 王喜占. T800碳纤维在复合材料压力容器上的应用研究[J]. 高科技纤维与应用, 2017, 42(3):45-49. doi: 10.3969/j.issn.1007-9815.2017.03.011

    CHEN Xiaoping, WANG Xizhan. T800 carbon fiber in the application of composite pressure vessel research[J]. Hi-Tech Fiber and Application,2017,42(3):45-49(in Chinese). doi: 10.3969/j.issn.1007-9815.2017.03.011
    [5]
    BARTHELEMY H, WEBER M, BARBIER F. Hydrogen storage: Recent improvements and industrial perspectives[J]. International Journal of Hydrogen Energy,2017,42(11):7254-7262. doi: 10.1016/j.ijhydene.2016.03.178
    [6]
    郑津洋, 李静媛, 黄强华, 等. 车用高压燃料气瓶技术发展趋势和我国面临的挑战[J]. 压力容器, 2014, 31(2):43-51. doi: 10.3969/j.issn.1001-4837.2014.02.007

    ZHENG Jinyang, LI Jingyuan, HUANG Qianghua, et al. Technology trends of high pressure vehicle fuel tanks and challenges for China[J]. Pressure Vessel Technology,2014,31(2):43-51(in Chinese). doi: 10.3969/j.issn.1001-4837.2014.02.007
    [7]
    中国国家标准化管理委员会. 车用压缩氢气铝内胆碳纤维全缠绕气瓶: GB/T 35544—2017[S]. 北京: 中国标准出版社, 2017.

    Standardization Administration of of the people’s Republic of China. Fully-wrapped carbon fiber reinforced cylinders with an aluminum liner for the on-board storage of compressed hydrogen as a fuel for land vehicles: GB/T 35544—2017[S]. Beijing: China Standards Press, 2017(in Chinese).
    [8]
    陈潇洒. 铝内胆碳纤维全缠绕高压气瓶的轻量化与长寿命技术研究[D]. 南京: 南京航空航天大学, 2017.

    CHEN Xiaosa. Research on lightweight and long-life technology of aluminum alloy liner carbon fiber full-wound cylinder[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017(in Chinese).
    [9]
    王静娴. 大容积全缠绕复合材料气瓶设计方法研究[D]. 太原: 太原理工大学, 2015.

    WANG Jingxian. Study on design method of large capacity fully wrapped composite cylinders[D]. Taiyuan: Taiyuan University of Technology, 2015(in Chinese).
    [10]
    PRAMOD R, KRISHNADASAN C, SIVA SHANMUGAM N. Design and finite element analysis of metal-elastomer lined composite over wrapped spherical pressure vessel[J]. Composite Structures,2019,224:111028. doi: 10.1016/j.compstruct.2019.111028
    [11]
    克莱伯 R M, 卡斯利 J E , 基亚 H G, 等. 复合材料压力容器及其组装方法: 中国, CN201110241868.7[P]. 2011-06-30.

    KLEIBER R M, CASLEY J E, KIA H G, et al. Composite pressure vessel and its assembly method: China, CN201110241868.7[P]. 2011-06-30(in Chinese).
    [12]
    陈汝训. 炭纤维壳体封头设计的几个问题[J]. 固体火箭技术, 2009, 32(5):543-547. doi: 10.3969/j.issn.1006-2793.2009.05.018

    CHEN Ruxun. Some problems for the dome design of carbon fiber case[J]. Journal of Solid Rocket Technology,2009,32(5):543-547(in Chinese). doi: 10.3969/j.issn.1006-2793.2009.05.018
    [13]
    陈汝训. 纤维缠绕圆环压力容器设计分析[J]. 固体火箭技术, 2006, 29(6):446-450. doi: 10.3969/j.issn.1006-2793.2006.06.014

    CHEN Ruxun. Design analysis on the filament-wound toroidal pressure vessel[J]. Journal of Solid Rocket Technology,2006,29(6):446-450(in Chinese). doi: 10.3969/j.issn.1006-2793.2006.06.014
    [14]
    LI Z, TANG F, CHEN Y, et al. Elastic and inelastic buckling of thin-walled steel liners encased in circular host pipes under external pressure and thermal effects[J]. Thin-Walled Structures,2019,137:213-223. doi: 10.1016/j.tws.2018.12.044
    [15]
    王欢, 余珊, 王特. 钛合金内衬碳纤维缠绕气瓶水压后轴向缩短分析[J]. 玻璃钢/复合材料, 2018(6):34-38. doi: 10.3969/j.issn.1003-0999.2018.06.006

    WANG Huan, YU Shan, WANG Te. Axial shortening analysis of carbon filament-wound pressure cylinder with titanium alloy liner after hydrostatic test[J]. Fiber Reinforced Plastics/Composites,2018(6):34-38(in Chinese). doi: 10.3969/j.issn.1003-0999.2018.06.006
    [16]
    贾利勇, 贺高, 把余炜. 三维渐进失效模型在层压板失效分析中的应用[C]//第17届全国复合材料学术会议. 北京: 中国航空学会, 2012: 129-135.

    JIA Liyong, HE Gao, BA Yuwei. 3D progressive failure model for composite laminates failure analysis[C]//17th National Conference on Composite Materials. Beijing: Chinese Society of Aeronautics and Astronautics, 2012: 129-135(in Chinese).
    [17]
    贾利勇, 廖斌斌, 于龙, 等. 基于Puck理论的复合材料层合板横向剪切失效分析[J]. 复合材料学报, 2019, 36(10):2286-2293.

    JIA Liyong, LIAO Binbin, YU Long, et al. Failure analysis of composite laminates with Puck’s theory under transverse shear load[J]. Acta Materiae Compositae Sinica,2019,36(10):2286-2293(in Chinese).
    [18]
    贾利勇, 贾欲明, 于龙, 等. 基于多尺度模型的复合材料厚板G13剪切失效分析[J]. 复合材料学报, 2017, 34(4):558-566.

    JIA Liyong, JIA Yuming, YU Long, et al. Failure analysis of thick composite laminates with multi-scale modelling under G13 out-of-plane shear loading[J]. Acta Materiae Compositae Sinica,2017,34(4):558-566(in Chinese).
    [19]
    RAFIEE R, GHORBANHOSSEINI A, REZAEE S. Theoretical and numerical analyses of composite cylinders subjected to the low velocity impact[J]. Composite Structures,2019,226:111230. doi: 10.1016/j.compstruct.2019.111230
    [20]
    GU F, YUAN X, ZHU X, et al. Numerical study of composite laminates subjected to low-velocity impact using a localized damage algorithm of Puck’s 3D IFF criterion[J]. Engineering Fracture Mechanics,2020,228:106901. doi: 10.1016/j.engfracmech.2020.106901
    [21]
    LI N, CHEN P. Failure prediction of T-stiffened composite panels subjected to compression after edge impact[J]. Composite Structures,2017,162:210-226. doi: 10.1016/j.compstruct.2016.12.004
    [22]
    RICCIO A, DI COSTANZO C, DI GENNARO P, et al. Intra-laminar progressive failure analysis of composite laminates with a large notch damage[J]. Engineering Failure Analysis,2017,73:97-112. doi: 10.1016/j.engfailanal.2016.12.012
    [23]
    ZU L, XU H, WANG H, et al. Design and analysis of filament-wound composite pressure vessels based on non-geodesic winding[J]. Composite Structures,2019,207:41-52. doi: 10.1016/j.compstruct.2018.09.007
    [24]
    CANAL J P, MICUZZI A, LOGARZO H, et al. On the finite element modeling of COPVs[J]. Computers & Structures,2019,220:1-13.
    [25]
    ZU L, WANG J, LI S. Influence of fiber slippage coefficient distributions on the geometry and performance of composite pressure vessels[J]. Polymer Composites,2016,37(1):315-321.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (1764) PDF downloads(120) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return