Volume 38 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
YANG Xudong, ZHENG Yuanxing, LI Weiting, et al. Effect of Si on microstructure and properties of carbon nanotubes reinforced aluminum matrix composite foams[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 186-197. doi: 10.13801/j.cnki.fhclxb.20200603.001
Citation: YANG Xudong, ZHENG Yuanxing, LI Weiting, et al. Effect of Si on microstructure and properties of carbon nanotubes reinforced aluminum matrix composite foams[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 186-197. doi: 10.13801/j.cnki.fhclxb.20200603.001

Effect of Si on microstructure and properties of carbon nanotubes reinforced aluminum matrix composite foams

doi: 10.13801/j.cnki.fhclxb.20200603.001
  • Received Date: 2020-03-09
  • Accepted Date: 2020-05-06
  • Available Online: 2020-06-03
  • Publish Date: 2021-01-15
  • For metal matrix composite materials, adding alloying elements is an effective way to improve its comprehensive performance. In the present study, the carbon nanotubes (CNTs) reinforced aluminum matrix (CNTs/Al-Si) composite foams with Si element were prepared by high-energy-ball milling and space holder method. Quasi-static compression test was carried out to study the compression properties and energy absorption performance of CNTs/Al-Si composite foams. The effects of sintering temperature and Si content on the microstructure, compression and energy absorption properties of the CNTs/Al-Si composite foams were further studied. The fracture failure mechanism was analyzed by the compression fracture morphology. The results show that the density and bonding of the CNTs/Al-Si composite foams increase with the increment of sintering temperature. When the sintering temperature is 600℃, mass fraction of Si is 7wt%, the yield strength, plateau stress, and energy absorption performance of CNTs/Al-Si composite foams are 98.4%, 167.7%, and 166.4% higher than that of the sintering temperature of 550℃, respectively. Moreover, the addition of Si element can refine composite powders during ball milling. Both of the strength and plasticity for the CNTs/Al-Si composite foams are improved after alloying. Compared with CNTs/Al composite foams, the yield strength and plateau stress of the CNTs/Al-Si composite foams with Si mass fraction of 7wt% increase by 58.5% and 117.8%, respectively. Meanwhile the energy absorption performance is significantly improved.

     

  • loading
  • [1]
    BANHART J, SEELIGER H W. Aluminum foam sandwich panels: Manufacture, metallurgy and applications[J]. Advanced Engineering Materials,2008,10(9):793-802. doi: 10.1002/adem.200800091
    [2]
    王应武, 夏宇, 王志平, 等. 泡沫铝材料应用研究现状[J]. 材料导报, 2013, 27(15):132-134. doi: 10.3969/j.issn.1005-023X.2013.15.027

    WANG Yingwu, XIA Yu, WANG Zhiping, et al. Research status on applications of aluminum foams[J]. Materials Review,2013,27(15):132-134(in Chinese). doi: 10.3969/j.issn.1005-023X.2013.15.027
    [3]
    YANG X D, HU Q, DU J, et al. Compression fatigue properties of open-cell aluminum foams fabricated by space-holder method[J]. International Journal of Fatigue,2019,121:272-280. doi: 10.1016/j.ijfatigue.2018.11.008
    [4]
    LI W T, YANG X D, HE C N, et al. Compressive responses and strengthening mechanisms of aluminum composite foams reinforced with graphene nanosheets[J]. Carbon,2019,153:396-406. doi: 10.1016/j.carbon.2019.07.043
    [5]
    YANG K M, YANG X D, LIU E Z, et al. High strain rate dynamic compressive properties and deformation behavior of Al matrix composite foams reinforced by in-situ grown carbon nanotubes[J]. Materials Science and Engineering A,2018,729:487-495. doi: 10.1016/j.msea.2017.09.011
    [6]
    杨旭东, 杨昆明, 邹田春, 等. 球磨对碳纳米管增强泡沫铝基复合材料压缩与吸能性能的影响[J]. 复合材料学报, 2018, 35(6):1518-1524.

    YANG Xudong, YANG Kunming, ZOU Tianchun, et al. Effect of ball milling on the compressive property and energy absorption capacity of the carbon nanotube reinforced aluminum composite foams[J]. Acta Materiae Compositae Sinica,2018,35(6):1518-1524(in Chinese).
    [7]
    DUARTE I, VENTURA E, OLHERO S, et al. An effective approach to reinforced closed-cell Al-alloy foams with multiwalled carbon nanotubes[J]. Carbon,2015,95:589-600. doi: 10.1016/j.carbon.2015.08.065
    [8]
    杨旭东, 毕智超, 陈亚军, 等. 泡沫铝基复合材料的研究进展[J]. 热加工工艺, 2015, 44(8):12-16.

    YANG Xudong, BI Zhichao, CHEN Yajun, et al. Recent advances in aluminum matrix composite foam[J]. Hot Working Technology,2015,44(8):12-16(in Chinese).
    [9]
    TANG Z K, ZHANG L Y, WANG N, et al. Superconductivity in 4 angstrom single-walled carbon nanotubes[J]. Science,2001,292(5526):2462-2465.
    [10]
    韦进全, 张先锋, 王昆林. 碳纳米管宏观体[J]. 北京: 清华大学出版社, 2006.

    WEI Jinquan, ZHANG Xianfeng, WANG Kunlin. Macrostructure of carbon nanotubes[J]. Beijing: Tsinghua University Press, 2006(in Chinese).
    [11]
    ZHOU X, SHIN E, WANG K W, et al. Interfacial damping characteristics of carbon nanotube-based composites[J]. Composite Science & Technology,2004,64(15):2425-2437.
    [12]
    YANG X D, YANG K M, WANG J W, et al. Compressive response and energy absorption characteristics of in situ grown CNT-reinforced Al composite foams[J]. Advanced Engineering Materials,2017,19(12):1700431.
    [13]
    DUARTE I, FERREIRA J M F. Composite and nanocomposite metal foams[J]. Materials,2016,9(2):79. doi: 10.3390/ma9020079
    [14]
    ZHANG Z, DING J, XIA X, et al. Fabrication and characterization of closed-cell aluminum foams with different contents of multi-walled carbon nanotubes[J]. Materials and Design,2015,88:359-365. doi: 10.1016/j.matdes.2015.09.017
    [15]
    IZADI H, GERLICH A P. Distribution and stability of carbon nanotubes during multi-pass friction stir processing of carbon nanotube/aluminum composites[J]. Carbon,2012,50(12):4744-4749. doi: 10.1016/j.carbon.2012.06.012
    [16]
    ESAWI A M K, MORSI K, SAYED A, et al. Fabrication and properties of dispersed carbon nanotube-aluminum composites[J]. Materials Science and Engineering A,2009,508(1-2):167-173. doi: 10.1016/j.msea.2009.01.002
    [17]
    YOO S J, HAN S H, KIM W J. Strength and strain hardening of aluminum matrix composites with randomly dispersed nanometer-length fragmented carbon nanotubes[J]. Scripta Materialia,2013,68(9):711-714.
    [18]
    LEE S, SHIN S, SUN Y, et al. Friction stir welding of multi-walled carbon nanotubes reinforced Al matrix composites[J]. Materials Characterization,2018,145:653-663. doi: 10.1016/j.matchar.2018.09.033
    [19]
    聂俊辉, 史娜, 张亚丰, 等. 镀W碳纳米管增强Al基复合材料的力学性能与导电率[J]. 粉末冶金技术, 2011, 29(5):344-350, 356.

    NIE Junhui, SHI Na, ZHANG Yafeng, et al. Mechanical properties and electrical conductivity of tungsten-coated carbon nanotube reinforced aluminum matrix composites[J]. Powder Metallurgy Technology,2011,29(5):344-350, 356(in Chinese).
    [20]
    TJONG S C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets[J]. Materials Science and Engineering R: Reports,2013,74(10):281-350. doi: 10.1016/j.mser.2013.08.001
    [21]
    BAKSHI S R, LAHIRI D, AGARWAL A. Carbon nanotube reinforced metal matrix composites: A review[J]. International Materials Reviews,2010,55(1):41-64. doi: 10.1179/095066009X12572530170543
    [22]
    CHOI H J, SHIN J H, MIN B H, et al. Deformation behavior of Al-Si alloy based nanocomposites reinforced with carbon nanotubes[J]. Composites Part A: Applied Science and Manufacturing,2010,41(2):327-329. doi: 10.1016/j.compositesa.2009.10.013
    [23]
    YANG X D, LIU E Z, SHI C S, et al. Fabrication of carbon nanotube reinforced Al composites with well-balanced strength and ductility[J]. Journal of Alloys and Compounds,2013,563:216-220.
    [24]
    YANG X D, ZOU T C, SHI C S, et al. Effect of carbon nanotube (CNT) content on the properties of in-situ synthesis CNT reinforced Al composites[J]. Materials Science and Engineering A,2016,660:11-18. doi: 10.1016/j.msea.2016.02.062
    [25]
    YANG K M, YANG X D, LIU E Z, et al. Elevated temperature compressive properties and energy absorption response of in-situ grown CNT-reinforced Al composite foams[J]. Materials Science and Engineering A,2017,690:294-302. doi: 10.1016/j.msea.2017.03.004
    [26]
    ANAS N S, RAMAKRISHNA M, DASH R K, et al. Influence of process control agents on microstructure and mechanical properties of Al alloy produced by mechanical alloying[J]. Materials Science & Engineering A,2019,751:171-182.
    [27]
    JI G, GROSDIDIER T, BOZZOLO N, et al. The mechanisms of microstructure formation in a nanostructured oxide dispersion strengthened FeAl alloy obtained by spark plasma sintering[J]. Intermetallics,2007,15(2):108-118. doi: 10.1016/j.intermet.2006.03.006
    [28]
    GIBSON L J, ASHBY M F. Cellular solids: Structure and properties (Second edition)[J]. Cambridge: Cambridge University Press, 1997.
    [29]
    YANG X D, HU Q, LI W T, et al. Compression-compression fatigue performance of aluminium matrix composite foams reinforced by carbon nanotubes[J]. Fatigue & Fracture of Engineering Materials & Structures,2020,43(4):744-756.
    [30]
    ALY M S. Behavior of closed cell aluminum foams upon compressive testing at elevated temperatures: Experimental results[J]. Materials Letters,2007,61(14-15):3138-3141. doi: 10.1016/j.matlet.2006.11.046
    [31]
    HAKAMADA M, NOMURA T, YAMADA Y, et al. Compressive properties at elevated temperatures of porous aluminum processed by the spacer method[J]. Journal of Materials Research,2005,20(12):3385-3390. doi: 10.1557/jmr.2005.0415
    [32]
    SAHU S, GOEL M D, MONDAL D P, et al. High temperature compressive deformation behavior of ZA27-SiC foam[J]. Materials Science and Engineering A,2014,607:162-172. doi: 10.1016/j.msea.2014.04.004
    [33]
    李海东. 热压烧结温度对铝基复合材料显微结构和性能的影响[J]. 铸造技术, 2014, 35(12):2955-2957.

    LI Haidong. Effect of hot-press sintering temperature on microstructure and properties of Al-matrix composites[J]. Foundry Technology,2014,35(12):2955-2957(in Chinese).
    [34]
    范冰冰, 王彬彬, 陈浩, 等. 碳纳米管/铝基复合材料的制备与性能[J]. 沈阳大学学报(自然科学版), 2013, 25(2):128-131.

    FAN Bingbing, WANG Binbin, CHEN Hao, et al. Preparation and characterization of carbon nanotubes/aluminum matrix composites[J]. Journal of Shenyang University (Natural Science),2013,25(2):128-131(in Chinese).
    [35]
    贾义旺, 张德恩, 卢锦德. 过烧对新型高强度铝合金组织性能的影响[J]. 热加工工艺, 2013, 42(4):179-181.

    JIA Yiwang, ZHANG Deen, LU Jinde. Effect of overburning on the microstructure and properties of new high-strength aluminum alloy[J]. Hot Working Technology,2013,42(4):179-181(in Chinese).
    [36]
    CHANG J, MOON I, CHOI C. Refinement of cast microstructure of hypereutectic Al-Si alloys through the addition of rare earth metals[J]. Journal of Materials Science,1998,33(20):5015-5023. doi: 10.1023/A:1004463125340
    [37]
    CHANG J Y, KIM G H, MOON I G, et al. Rare earth concentration in the primary Si crystal in rare earth added Al-21wt% Si alloy[J]. Scripta Materialia,1998,39(3):307-314.
    [38]
    JEON J H, SHIN J H, BAE D H. Si phase modification on the elevated temperature mechanical properties of Al-Si hypereutectic alloys[J]. Materials Science & Engineering A,2019,748:367-370.
    [39]
    JIGAJINNI S M, VENKATESWARLU K, KORI S A. Effect of a grain refiner cum modifier on mechanical properties of Al-7Si and Al-11Si alloys[J]. Metals & Materials International,2013,19(2):171-181.
    [40]
    杨旭东, 陈亚军, 师春生, 等. 球磨工艺对原位合成碳纳米管增强铝基复合材料微观组织和力学性能的影响[J]. 材料工程, 2017, 45(9):93-100.

    YANG Xudong, CHEN Yajun, SHI Chunsheng, et al. Effect of ball-milling process on the microstructure and mechanical properties of in-situ synthesized carbon nanotube reinforced aluminum composites[J]. Journal of Materials Engineering,2017,45(9):93-100(in Chinese).
    [41]
    王鹏飞, 徐松林, 胡时胜. 不同温度下泡沫铝压缩行为与变形机制探讨[J]. 振动与冲击, 2013, 32(5):16-19. doi: 10.3969/j.issn.1000-3835.2013.05.004

    WANG Pengfei, XU Songlin, HU Shisheng. Compressive behavior and deformation mechanism of aluminum foam under different temperature[J]. Journal of Vibration and Shock,2013,32(5):16-19(in Chinese). doi: 10.3969/j.issn.1000-3835.2013.05.004
    [42]
    郭磊, 李天阳, 温小椿, 等. 过滤铸造法调控过共晶硅铝合金中初晶硅尺寸[J]. 稀有金属材料与工程, 2019, 48(7):2138-2145.

    GUO Lei, LI Tianyang, WEN Xiaochun, et al. Control of primary silicon crystal size in hypereutectic Al-Si alloys by filtering casting method[J]. Rare Metal Materials and Engineering,2019,48(7):2138-2145(in Chinese).
    [43]
    DAMAVANDI E, NOUROUZI S, RABIEE S M, et al. Effect of ECAP on microstructure and tensile properties of A390 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China,2019,29(5):931-940.
    [44]
    CHANDRA K, KAIN V. Brittle failure of hypereutectic Al-Si alloy component[J]. Journal of Failure Analysis and Prevention,2015,15(5):679-685. doi: 10.1007/s11668-015-9996-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (1213) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return