Volume 38 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
WANG Bingda, YANG Zihao, ZHANG Yongcun. Design of higher allowable temperature range for zero thermal expansion composites considering stiffness characteristic[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 279-286. doi: 10.13801/j.cnki.fhclxb.20200511.001
Citation: WANG Bingda, YANG Zihao, ZHANG Yongcun. Design of higher allowable temperature range for zero thermal expansion composites considering stiffness characteristic[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 279-286. doi: 10.13801/j.cnki.fhclxb.20200511.001

Design of higher allowable temperature range for zero thermal expansion composites considering stiffness characteristic

doi: 10.13801/j.cnki.fhclxb.20200511.001
  • Received Date: 2020-03-23
  • Accepted Date: 2020-04-27
  • Available Online: 2020-05-11
  • Publish Date: 2021-01-15
  • The macroscopic zero thermal expansion of material could be obtained through combining two kinds of materials with different positive thermal expansion coefficients within a unit cell. These composites usually possess higher thermally geometric stability in the large temperature fluctuation. However, it readily produces excessive thermal stress on the interface between the two constituent materials and therefore limits the allowable temperature range of the material. A new evaluation index of the maximum thermal stress of unit temperature rise was resorted to perform allowable temperature and stiffness analyses for the three types of typical bending-dominated zero expansion materials. Both the analytic and numerical simulation methods were adopted and the influences of cell design parameters on these aspects were also discussed. The results show that when the designed zero expansion attribute is achieved, the high stiffness and high allowable temperature range can be obtained at the same time if the reasonable constituent materials and structural parameters are selected.

     

  • loading
  • [1]
    LIU S, HU R, LI Q, et al. Topology optimization-based lightweight primary mirror design of a large-aperture space telescope[J]. Applied Optics,2014,53(35):8318-8325. doi: 10.1364/AO.53.008318
    [2]
    HU R, CHEN W, LI Q, et al. Design optimization method for additive manufacturing of the primary mirror of a large-aperture space telescope[J]. Journal of Aerospace Engineering,2016,30(3):04016093.
    [3]
    TOROPOVA M M, STEEVES C A. Adaptive bimaterial lattices to mitigate thermal expansion mismatch stresses in satellite structures[J]. Acta Astronautica,2015,113:132-141. doi: 10.1016/j.actaastro.2015.03.022
    [4]
    ZHENGCHUN D, MENGRUI Z, ZHIGUO W, et al. Design and application of composite platform with extreme low thermal deformation for satellite[J]. Composite Structures,2016,152:693-703. doi: 10.1016/j.compstruct.2016.05.073
    [5]
    CUI E J. Research statutes, development trends and key technical problems of near space flying vehicles[J]. Advances in Mechanics,2009,39(6):658-672.
    [6]
    ENTEL P, HOFFMANN E, MOHN P, et al. First-principles calculations of the instability leading to the Invar effect[J]. Physical Review B,1993,47(14):8706-8720. doi: 10.1103/PhysRevB.47.8706
    [7]
    韦凯, 裴永茂. 轻质复合材料及结构热膨胀调控设计研究进展[J]. 科学通报, 2017, 62(1):47-60. doi: 10.1360/N972016-00630

    WEI Kai, PEI Yongmao. Development of designing lightweight composites and structures for tailorable thermal expansion[J]. Chinese Science Bulletin,2017,62(1):47-60(in Chinese). doi: 10.1360/N972016-00630
    [8]
    STEEVES C A, E LUCATO S L S, HE M, et al. Concepts for structurally robust materials that combine low thermal expansion with high stiffness[J]. Journal of the Mechanics and Physics of Solids,2007,55(9):1803-1822. doi: 10.1016/j.jmps.2007.02.009
    [9]
    WEI K, CHEN H, PEI Y, et al. Planar lattices with tailorable coefficient of thermal expansion and high stiffness based on dual-material triangle unit[J]. Journal of the Mechanics and Physics of Solids,2016,86:173-191. doi: 10.1016/j.jmps.2015.10.004
    [10]
    LAKES R. Cellular solid structures with unbounded thermal expansion[J]. Journal of Materials Science Letters,1996,15(6):475-477. doi: 10.1007/BF00275406
    [11]
    LEHMAN J, LAKES R S. Stiff lattices with zero thermal expansion[J]. Journal of Intelligent Material Systems and Structures,2012,23(11):1263-1268. doi: 10.1177/1045389X12445647
    [12]
    LEHMAN J, LAKES R S. Stiff, strong zero thermal expansion lattices via the Poisson effect[J]. Journal of Materials Research,2013,28(17):2499-2508. doi: 10.1557/jmr.2013.154
    [13]
    LEHMAN J, LAKES R S. Stiff, strong, zero thermal expansion lattices via material hierarchy[J]. Composite Structures,2014,107:654-663. doi: 10.1016/j.compstruct.2013.08.028
    [14]
    SIGMUND O, TORQUATO S. Design of materials with extreme thermal expansion using a three-phase topology optimization method[J]. Journal of the Mechanics and Physics of Solids,1997,45(6):1037-1067. doi: 10.1016/S0022-5096(96)00114-7
    [15]
    SIGMUND O, TORQUATO S. Composites with extremal thermal expansion coefficients[J]. Applied Physics Letters,1996,69(21):3203-3205. doi: 10.1063/1.117961
    [16]
    LEHMAN J, LAKES R S. Stiff lattices with zero thermal expansion and enhanced stiffness via rib cross section optimization[J]. International Journal of Mechanics and Materials in Design, 2013, 9(3): 213-225.
    [17]
    ZHANG Y C, LIANG Y J, LIU S T, et al. A new design of dual-constituent triangular lattice metamaterial with unbounded thermal expansion[J]. Acta Mechanica Sinica,2019,35(3):507-517.
    [18]
    ZHANG Y, LIANG Y, LIU S, et al. A new design for enhanced stiffness of dual-constituent triangular lattice metamaterial with unbounded thermal expansion[J]. Materials Research Express,2018,6(1):015705. doi: 10.1088/2053-1591/aae5be
    [19]
    TIMOSHENKO S. Analysis of bi-metal thermostats[J]. Josa,1925,11(3):233-255. doi: 10.1364/JOSA.11.000233
    [20]
    SUHIR E. Interfacial stresses in bimetal thermostats[J]. Journal of Applied Mechanics,1989,56(3):595-600. doi: 10.1115/1.3176133
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article views (933) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return