Volume 37 Issue 12
Dec.  2020
Turn off MathJax
Article Contents
ZENG Fanzhan, CHEN Xianhong, WANG Jianfeng. Continuous fabrication of flexible, thermally conductive aluminum nitride/aramid nanofiber composite films[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3043-3051. doi: 10.13801/j.cnki.fhclxb.20200428.001
Citation: ZENG Fanzhan, CHEN Xianhong, WANG Jianfeng. Continuous fabrication of flexible, thermally conductive aluminum nitride/aramid nanofiber composite films[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3043-3051. doi: 10.13801/j.cnki.fhclxb.20200428.001

Continuous fabrication of flexible, thermally conductive aluminum nitride/aramid nanofiber composite films

doi: 10.13801/j.cnki.fhclxb.20200428.001
  • Received Date: 2020-03-02
  • Accepted Date: 2020-04-19
  • Available Online: 2020-04-28
  • Publish Date: 2020-12-15
  • Designing and preparing flexible thermally conductive materials is important for thermal management of flexible electronic devices. Based on exfoliated aramid nanofiber and aluminum nitride (AlN) nanoparticle, flexible and thermally conductive composite films were fabricated by a sol-gel-film transformation approach. In the composite films, aramid nanofibers forms three-dimensional connective network for providing mechanical support. AlN nanoparticles are filled in the network of aramid nanofiber to impart the composite films with good thermal conduction performance. As a result, the tensile strength and strain at break are 65.5 MPa and 12%, respectively. After folding for 300 cycles, the composite films retain more than 90% of original tensile strength and strain at break. The thermal conductivity is up to 13.98 W·(m·K)−1. Moreover, the composite films show good electrically insulating property and thermal stability. The volume electrical resistivity and initial thermal decomposition temperature are 1.85×1015 Ω·cm and 524℃. Finally, we demonstrate that the high-performance AlN/aramid nanofiber composite films can be act as flexible substrate for cooling electronics.

     

  • loading
  • [1]
    BALANDIN A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials,2011,10(8):569-581. doi: 10.1038/nmat3064
    [2]
    SONG W L, WANG W, VECA L M, et al. Polymer/carbon nanocomposites for enhanced thermal transport properties-carbon nanotubes versus graphene sheets as nanoscale fillers[J]. Journal of Materials Chemistry,2012,22(33):17133-17139. doi: 10.1039/c2jm32469e
    [3]
    CHEN J, HUANG X, SUN B, et al. Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability[J]. ACS Nano,2019,13(1):337-345. doi: 10.1021/acsnano.8b06290
    [4]
    SLACK G A, TANZILLI R A, POHL R O, et al. The intrinsic thermal conductivity of AIN[J]. Journal of Physics & Chemistry of Solids,1987,48(7):641-647.
    [5]
    YU S, HING P, HU X. Thermal conductivity of polystyrene-aluminum nitride composite[J]. Composites Part A: Applied Science and Manufacturing,2002,33(2):289-292. doi: 10.1016/S1359-835X(01)00107-5
    [6]
    CAO Y, IRWIN P C, YOUNSI K. The future of nanodielectrics in the electrical power industry[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2004,11(5):797-807. doi: 10.1109/TDEI.2004.1349785
    [7]
    CHOY C L. Thermal conductivity of polymers[J]. Polymer,1977,18(10):984-1004. doi: 10.1016/0032-3861(77)90002-7
    [8]
    CHEN H, GINZBURG V V, YANG J, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Progress in Polymer Science,2016,59:41-85. doi: 10.1016/j.progpolymsci.2016.03.001
    [9]
    WU G, WANG Y, WANG K, et al. The effect of modified AlN on the thermal conductivity, mechanical and thermal properties of AlN/polystyrene composites[J]. RSC Advances,2016,6(104):102542-102548. doi: 10.1039/C6RA22794E
    [10]
    KIM K, YOO M, AHN K, et al. Thermal and mechanical properties of AlN/BN-filled PVDF composite for solar cell backsheet application[J]. Ceramics International,2015,41(1):179-187. doi: 10.1016/j.ceramint.2014.08.056
    [11]
    ZHANG K, PENG T, ZHANG Y H, et al. Highly thermal conductivity of CNF/AlN hybrid films for thermal management of flexible energy storage devices[J]. Carbohydrate Polymers,2019,213:228-235. doi: 10.1016/j.carbpol.2019.02.087
    [12]
    GARCÍA J M, GARCÍA F C, SERNA F, et al. High-performance aromatic polyamides[J]. Progress in Polymer Science,2010,35(5):623-686. doi: 10.1016/j.progpolymsci.2009.09.002
    [13]
    CHATZI E G, KOENIG J L. Morphology and structure of kevlar fibers: a review[J]. Polymer-Plastics Technology and Engineering,1987,26:229-270. doi: 10.1080/03602558708071938
    [14]
    YANG M, CAO K, SUI L, et al. Dispersions of aramid nanofibers: A new nanoscale building block[J]. ACS Nano,2011,5(9):6945-6954. doi: 10.1021/nn2014003
    [15]
    KUANG Q, ZHANG D, YU J C, et al. Toward record-high stiffness in polyurethane nanocomposites using aramid nanofibers[J]. The Journal of Physical Chemistry C,2015,119(49):27467-27477. doi: 10.1021/acs.jpcc.5b08856
    [16]
    ZHU J, YANG M, EMRE A, et al. Branched aramid nanofibers[J]. Angewandte Chemie International Edition,2017,56(39):11744-11748. doi: 10.1002/anie.201703766
    [17]
    TSAGAROPOULOS G, EISENBERG A. Dynamic mechanical study of the factors affecting the two glass transition behavior of filled polymers: Similarities and differences with random ionomers[J]. Macromolecules,1995,28(18):6067-6077. doi: 10.1021/ma00122a011
    [18]
    PAN C, KOU K, WU G, et al. Fabrication and characterization of AlN/PTFE composites with low dielectric constant and high thermal stability for electronic packaging[J]. Journal of Materials Science: Materials in Electronics,2016,27(1):286-292. doi: 10.1007/s10854-015-3752-2
    [19]
    CHEN P, KOU K C, ZHANG Y, et al. Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles[J]. Composites Part B: Engineering,2018,153:1-8. doi: 10.1016/j.compositesb.2018.07.019
    [20]
    WU S Y, HUANG Y L, MA C C M, et al. Mechanical, thermal and electrical properties of aluminum nitride/polyetherimide composites[J]. Composites Part A: Applied Science and Manufacturing,2011,42(11):1573-1583. doi: 10.1016/j.compositesa.2011.06.009
    [21]
    KIM K, KIM J. Magnetic aligned AlN/epoxy composite for thermal conductivity enhancement at low filler content[J]. Composites Part B: Engineering,2016,93:67-74. doi: 10.1016/j.compositesb.2016.02.052
    [22]
    ZHANG T, WU X, LUO T. Polymer nanofibers with outstanding thermal conductivity and thermal stability: Fundamental linkage between molecular characteristics and macroscopic thermal properties[J]. The Journal of Physical Chemistry C,2014,118(36):21148-21159. doi: 10.1021/jp5051639
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (1153) PDF downloads(105) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return