Volume 37 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
ZHANG Zhexuan, ZHOU Zaifeng, SHAN Quan, et al. Hole diameter of honeycomb preform governing W diffusion uniformity in WC/Fe composites[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2518-2525. doi: 10.13801/j.cnki.fhclxb.20200226.001
Citation: ZHANG Zhexuan, ZHOU Zaifeng, SHAN Quan, et al. Hole diameter of honeycomb preform governing W diffusion uniformity in WC/Fe composites[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2518-2525. doi: 10.13801/j.cnki.fhclxb.20200226.001

Hole diameter of honeycomb preform governing W diffusion uniformity in WC/Fe composites

doi: 10.13801/j.cnki.fhclxb.20200226.001
  • Received Date: 2019-11-19
  • Accepted Date: 2020-01-05
  • Available Online: 2020-02-26
  • Publish Date: 2020-10-15
  • In order to investigate the effect of hole diameter in honeycomb preform on the W diffusion uniformity, the WC/Fe composites with different diameters were fabricated by vacuum expendable pattern casting (V-EPC) process. Based on the W mass fraction distribution analysis, it is found that the W distributes uniformity when the hole diameter is too large or too smallthe, while wear resistance of WC/Fe composites with the proper hole diameter of preform is the best, and the differences of the W mass fraction and hardness between initial hole wall and initial hole center are reduced. The simulation results by diffusion dynamics show that the uniformity of W diffusion is both influenced by diffusion distance and diffusion time. The W diffusion is limited when the hole diameter is samll and the diffusion distance is short although the diffusion time decreases, resluted from the fast internal matrix solidification. The W diffusion is also limited when the hole diameter is large, although the internal matrix solidifies slow and the diffusion time increases, but the diffusion distance increases. So the proper hole diameter has positive influence on the W diffusion uniformity with reasonable diffusion distance and diffusion time. On the contrary, the W diffusion uniformity is undesirable, and the W mass fraction and the hardness at the initial hole center are lower, resulting in the reduction of wear resistance within a certain range.

     

  • loading
  • [1]
    李祖来, 蒋业华, 周荣, 等. 碳化钨颗粒增强钢基表层复合材料的热物理特性[J]. 材料研究学报, 2014, 28(8):621-626. doi: 10.11901/1005.3093.2013.913

    LI Zulai, JIANG Yehua, ZHOU rong, et al. Thermo-physical characteristics of WC particle-reinforced steel substrate surface composites[J]. Chinese Journal of Materials Research,2014,28(8):621-626(in Chinese). doi: 10.11901/1005.3093.2013.913
    [2]
    张玉波, 郭荣鑫, 夏海廷, 等. WCP含量对粉末冶金Cu/WCP复合材料疲劳裂纹扩展行为的影响[J]. 材料工程, 2017, 45(1):85-92. doi: 10.11868/j.issn.1001-4381.2015.001530

    ZHANG Yubo, GUO Rongxin, XIA Haiting, et al. Effect of WCP content on fatigue crack growth behavior of powder metallurgy Cu/WCP composites[J]. Journal of Materials Engineering,2017,45(1):85-92(in Chinese). doi: 10.11868/j.issn.1001-4381.2015.001530
    [3]
    山泉, 张亚峰, 张哲轩, 等. 钨含量对WCP/钢基表层复合材料压缩性能及热疲劳行为的影响[J]. 材料工程, 2019, 47(2):115-121. doi: 10.11868/j.issn.1001-4381.2017.001445

    SHAN Quan, ZHANG Yafeng, ZHANG Zhexuan, et al. Effect of W content on compression and thermal fatigue behavior of WCP/steel matrix composites[J]. Journal of Materials Engineering,2019,47(2):115-121(in Chinese). doi: 10.11868/j.issn.1001-4381.2017.001445
    [4]
    陈奉锐, 山泉, 李祖来, 等. 重熔温度对WCP/Fe复合材料界面特征及压缩断裂机制的影响[J]. 复合材料学报, 2018, 35(11):3106-3113.

    CHEN Fengrui, SHAN Quan, LI Zulai, et al. Effect of re-melting temperature on interface and compression fracture mechanism of WCP/Fe composites[J]. Acta Materiae Compositae Sinica,2018,35(11):3106-3113(in Chinese).
    [5]
    LIU A, GUO M, HU H L. Distribution and dissolution of WC particles in surface metal matrix composites produced by plasma melt injection[J]. Surface Engineering,2010,26(8):623-628. doi: 10.1179/174329409X389317
    [6]
    吴迎飞, 陈华辉, 李海存, 等. 铁基复合材料中碳化W元素颗粒的溶解析出行为[J]. 材料工程, 2018, 8(8):98-105. doi: 10.11868/j.issn.1001-4381.2016.000313

    WU Yingfei, CHEN Huahui, LI Haicun, et al. Dissolution and precipitation behavior of WC particles in iron matrix composites[J]. Journal of Materials Engineering,2018,8(8):98-105(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.000313
    [7]
    隋育栋, 蒋业华, 李祖来, 等. WC溶解对WCp/钢基表层复合材料组织和性能的影响[J]. 材料热处理学报, 2012, 33(Z1):7-10.

    SUI Yudong, JIANG Yehua, LI Zulai, et al. Effects of WC dissolute in matrix on microstructure and properties of WC reinforced steel composite[J]. Transactions of Materials and Heat Treatment,2012,33(Z1):7-10(in Chinese).
    [8]
    ANDREIKIV O E, SHTAYURA N S. Computational models of fatigue cracks growth in metallic materials under the action of force and physicochemical factors[J]. Materials Science,2019,54(4):465-476. doi: 10.1007/s11003-019-00206-1
    [9]
    HUANG C Q, NUNG K Y. Singular perturbation and bifurcation of diffuse transition layer in inhomogeneous media, part II[J]. Networks and Heterogeneous Media,2015,10(4):897-948. doi: 10.3934/nhm.2015.10.897
    [10]
    ZHOU Mojin, SUI Yudong, CHONG Xiaoyu, et al. Wear resistance mechanism of ZTAP/HCCI composites with a honeycomb structure[J]. Metals,2018,8:588. doi: 10.3390/met8080588
    [11]
    周谟金, 蒋业华, 卢德宏, 等. B4C包覆ZTA颗粒增强铁基复合材料制备与性能[J]. 材料导报, 2018, 32(12):4324-4328.

    ZHOU Mojin, JIANG Yehua, LU Dehong, et al. Preparation and properties of the ZTA particles cover with B4C powder reinforced iron matrix composites[J]. Materials Reports,2018,32(12):4324-4328(in Chinese).
    [12]
    WU Xiaorong, YU Hongjun, GUO Licheng, et al. Experimental and numerical investigation of static and fatigue behaviors of composites honeycomb sandwich structure[J]. Composite Structures,2019,213:165-172. doi: 10.1016/j.compstruct.2019.01.081
    [13]
    SONG Ping, LIANG Chaobo, WANG Lei, et al. Obviously improved electromagnetic interference shielding preformances for epoxy composites via constructing honeycomb structural reduced graphene oxide[J]. Composites Science and Technology,2019,181:107698. doi: 10.1016/j.compscitech.2019.107698
    [14]
    XU Daqing, LUO Jirong, HUANG Naiyu. Structures and properties of iron matrix composites with W carbide particle by EPC-V process[J]. Journal of Iron and Steel Research International,1999,6(2):29-32.
    [15]
    SHI Tao, GUO Leichen, HAO Junjie, et al. Microstructure and wear resistance of in-situ TiC surface composites coating on copper matrix synthesized by SHS and vacuum-expendable pattern casting[J]. Surface & Coatings Technology,2017,324:288-297.
    [16]
    李永坤, 李璐, 周荣锋, 等. ZCuSn10合金半固态流变挤压件显微组织的演变[J]. 材料导报, 2017, 31(16):60-64. doi: 10.11896/j.issn.1005-023X.2017.016.013

    LI Yongkun, LI Lu, ZHOU Rongfeng, et al. Microstructure evolution of semi-solid ZCuSn10 alloy prepared by rheological squeeze casting[J]. Materials Reports,2017,31(16):60-64(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.016.013
    [17]
    LI Yongkun, ZHOU Rongfeng, LI Lu, et al. Microstructures formation, distribution of tin element and properties of CuSn10P1 alloy during controlled by melt cooling[J]. Materials Research Express,2018,5(6):066517. doi: 10.1088/2053-1591/aac931
    [18]
    JACKSON R S. The austenite liquidus surface and constitutional diagram for the Fe-Cr-C metastable system[J]. Journal of the Iron and Steel Institute,1970,208(2):163.
    [19]
    TABRETT C P, SARE I R, GHOMASHCHI M R. Microstructure-property relationships in high chromium white iron alloys[J]. International Materials Reviews,1996,41(2):59-82. doi: 10.1179/imr.1996.41.2.59
    [20]
    禹润缜, 刘胜新, 王朋旭, 等. Fe-Cr-C系硬面合金及其硬质相的研究进展[J]. 材料导报, 2018, 32(21):3780-3788. doi: 10.11896/j.issn.1005-023X.2018.21.015

    YU Runzhen, LIU Shengxin, WANG Pengxu, et al. A brief survey on the Fe-Cr-C hard facing alloys and its hard phases[J]. Materials Reports,2018,32(21):3780-3788(in Chinese). doi: 10.11896/j.issn.1005-023X.2018.21.015
    [21]
    张建勋, 裴怡, 米运卿. 液相扩散焊等温凝固阶段的特征及解析解[J]. 焊管, 2004, 27(6):25-31. doi: 10.3969/j.issn.1001-3938.2004.06.006

    ZHANG Jianxun, PEI Yi, MI Yunqing. Characteristics of isothermal solidification stage and analytical solutions for the stage in transient liquid phase bonding process[J]. Welded Pipe and Tube,2004,27(6):25-31(in Chinese). doi: 10.3969/j.issn.1001-3938.2004.06.006
    [22]
    刘安娜, 翟秋亚, 徐锦锋, 等. DD6单晶TLP焊保温时间及硼元素扩散距离的理论预测[J]. 热加工工艺, 2014, 43(19):190-193, 197.

    LIU Anna, ZHAI Qiuya, XU Jinfeng, et al. Prediction of temperature holding time and B element diffusion distance of TLP bonding for DD6 superalloy[J]. Hot Working Technology,2014,43(19):190-193, 197(in Chinese).
    [23]
    张哲轩, 周再峰, 山泉, 等. 表面W元素合金化对高铬铸铁组织和硬度的影响[J]. 材料导报, 2019, 33(Z1):362-365.

    ZHANG Zhexuan, ZHOU Zaifeng, SHAN Quan, et al. Effect of surface W alloying on microstructure and hardness of high chromium cast iron[J]. Materials Reports,2019,33(Z1):362-365(in Chinese).
    [24]
    ZHOU Zaifeng, SHAN Quan, JIANG Yehua, et al. Effect of nanoscale V2C precipitates on the three-body abrasive wear behavior of high-Mn austenitic steel[J]. Wear,2019,436-437:203009. doi: 10.1016/j.wear.2019.203009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article views (626) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return