Volume 37 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
LIU Xiuyu, ZHANG Bing, HAN Xiangxiang, et al. Preparation and properties of hollow glass microspheres/rigid polyurethane foam composites[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2094-2104. doi: 10.13801/j.cnki.fhclxb.20200115.002
Citation: LIU Xiuyu, ZHANG Bing, HAN Xiangxiang, et al. Preparation and properties of hollow glass microspheres/rigid polyurethane foam composites[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2094-2104. doi: 10.13801/j.cnki.fhclxb.20200115.002

Preparation and properties of hollow glass microspheres/rigid polyurethane foam composites

doi: 10.13801/j.cnki.fhclxb.20200115.002
  • Received Date: 2019-10-16
  • Accepted Date: 2020-01-13
  • Available Online: 2020-01-15
  • Publish Date: 2020-09-15
  • The hollow glass microspheres(HGM) were used as additives to prepare a series of HGM/rigid polyurethane foam(RPUF) composites by one-step water-blown method. SEM, TG, limiting oxygen index(LOI) and horizontal combustion were applied to investigate the cell structure, char layer morphology, thermal stability and flame retardancy of the HGM/RPUF composites. The universal material testing machine was applied to study the compressive strength and compressive elastic modulus of the HGM/RPUF composites. Thermogravimetric analysis-Fourier transform infrared spectrophotometer(TG-FTIR) was applied to investigate the gaseous phase products of the HGM/RPUF composites. The results show that the HGM work as nucleating agent, which can reduce the pore diameter of the HGM/RPUF composites. In combustion, the HGM particles migrate to the surface of the char layer, promoting the formation of the compact char layer. When 5.4wt% of HGM were added, the compressive strength and compressive elastic modulus of the HGM/RPUF composites are increased to 0.14 MPa and 4.53 MPa, respectively, which are increased by 37.30% and 67.16% compared with those of the RPUF. At the same time, it is found that the HGM can significantly inhibit the release of toxic CO in combustion process, enhancing the fire safety of the HGM/RPUF composites.

     

  • loading
  • [1]
    PARUZEL A, MICHALOWSKI S, HODAN J, et al. Rigid polyurethane foam fabrication using medium chain glycerides of coconut oil and plastics from end-of-life vehicles[J]. ACS Sustainable Chemistry & Engineering,2017,5(7):6237-6246.
    [2]
    FURTWENGLER P, AVEROUS L. Renewable polyols for advanced polyurethane foams from diverse biomass resources[J]. Polymer Chemistry,2018,9(32):4258-4287. doi: 10.1039/C8PY00827B
    [3]
    YANG R, HU W T, XU L, et al. Synthesis, mechanical properties and fire behaviors of rigid polyurethane foam with a reactive flame retardant containing phosphazene and phosphate[J]. Polymer Degradation and Stability,2015,122:102-109. doi: 10.1016/j.polymdegradstab.2015.10.007
    [4]
    XU W Z, WANG G S, XU J Y, et al. Modification of diatomite with melamine coated zeolitic imidazolate framework-8 as an effective flame retardant to enhance flame retardancy and smoke suppression of rigid polyurethane foam[J]. Journal of Hazardous Materials,2019,379:120819.
    [5]
    BIAN X C, TANG J H, LI Z M. Flame retardancy of whisker silicon oxide/rigid polyurethane foam composites with expandable graphite[J]. Journal of Applied Polymer Science,2008,110(6):3871-3879. doi: 10.1002/app.28921
    [6]
    PIELICHOWSKI K, SLOTWINSKA D. Morphological features and flammability of MDI/HMDI-based segmented polyurethanes containing 3-chloro-1,2-propanediol in the main chain[J]. Polymer Degradation and Stability,2003,80(2):327-331. doi: 10.1016/S0141-3910(03)00016-8
    [7]
    CAO Z J, DONG X, FU T, et al. Coated vs. naked red phosphorus: A comparative study on their fire retardancy and smoke suppression for rigid polyurethane foams[J]. Polymer Degradation and Stability,2017,136:103-111. doi: 10.1016/j.polymdegradstab.2016.12.004
    [8]
    LUO F B, WU K, LU M G, et al. Thermal degradation and flame retardancy of microencapsulated ammonium polyphosphate in rigid polyurethane foam[J]. Journal of Thermal Analysis and Calorimetry,2015,120(2):1327-1335. doi: 10.1007/s10973-015-4425-3
    [9]
    XU D M, LIU X, FENG J, et al. Preparation of boron-coated expandable graphite and its application in flame retardant rigid polyurethane foam[J]. Chemical Research in Chinese Universities,2015,31(2):315-320. doi: 10.1007/s40242-015-4101-y
    [10]
    ZHENG X R, WANG G J, XU W. Roles of organically-modified montmorillonite and phosphorous flame retardant during the combustion of rigid polyurethane foam[J]. Polymer Degradation and Stability,2014,101:32-39. doi: 10.1016/j.polymdegradstab.2014.01.015
    [11]
    LUO F B, WU K, LI Y W, et al. Reactive flame retardant with core-shell structure and its flame retardancy in rigid polyurethane foam[J]. Journal of Applied Polymer Science,2015,132(46):42800.
    [12]
    ACUNA P, LI Z, SANTIAGO-CALVO M, et al. Influence of the characteristics of expandable graphite on the morphology, thermal properties, fire behaviour and compression performance of a rigid polyurethane foam[J]. Polymers,2019,11(1):168. doi: 10.3390/polym11010168
    [13]
    KIM H, PARK J, MINN K S, et al. Flame retardant composite foam modified by silylated nanocellulose and tris(2-chloropropyl) phosphate[J]. Fibers and Polymers,2019,20(11):2280-2288. doi: 10.1007/s12221-019-9491-x
    [14]
    GENG H T, LIU J C, GUO A R, et al. Fabrication of heat-resistant syntactic foams through binding hollow glass microspheres with phosphate adhesive[J]. Materials & Design,2016,95:32-38.
    [15]
    REN S, LIU J C, GUO A R, et al. Mechanical properties and thermal conductivity of a temperature resistance hollow glass microspheres/borosilicate glass buoyance material[J]. Materials Science and Engineering A,2016,674:604-614. doi: 10.1016/j.msea.2016.08.014
    [16]
    VAHTRUS M, ORAS S, ANTSOV M, et al. Mechanical and thermal properties of epoxy composite thermal insulators filled with silica aerogel and hollow glass microspheres[J]. Proceedings of the Estonian Academy of Sciences,2017,66(4):339-346. doi: 10.3176/proc.2017.4.03
    [17]
    YANG H Y, JIANG Y P, LIU H Y, et al. Mechanical, thermal and fire performance of an inorganic-organic insulation material composed of hollow glass microspheres and phenolic resin[J]. Journal of Colloid and Interface Science,2018,530:163-170. doi: 10.1016/j.jcis.2018.06.075
    [18]
    JIAO C M, WANG H Z, CHEN X L. Preparation of modified fly ash hollow glass microspheres using ionic liquids and its flame retardancy in thermoplastic polyurethane[J]. Journal of Thermal Analysis and Calorimetry,2018,133(3):1471-1480. doi: 10.1007/s10973-018-7190-2
    [19]
    XIANG Y S, WANG L J, YANG Z, et al. Effect of aluminum phosphinate on the flame-retardant properties of epoxy syntactic foams[J]. Journal of Thermal Analysis and Calorimetry,2019,137(5):1645-1656. doi: 10.1007/s10973-019-08051-9
    [20]
    王彩华, 李慧剑, 余为, 等. 空心玻璃微珠增强环氧树脂复合材料的动态力学性能[J]. 复合材料学报, 2018, 35(5):1105-1113.

    WANG C H, LI H J, YU W, et al. Dynamic mechanical properties analysis of hollow glass microsphere reinforced epoxy resin composite[J]. Acta Materiae Compositae Sinica,2018,35(5):1105-1113(in Chinese).
    [21]
    余为, 薛海龙, 钱蒙, 等. 浸泡腐蚀对玻璃纤维-空心玻璃微珠/环氧树脂复合泡沫材料弯曲性能的影响[J]. 复合材料学报, 2015, 32(6):1688-1695.

    YU W, XUE H L, QIAN M, et al. Influence of soak corrosion on flexural properties of glass fiber-hollow glass microsphere/epoxy syntactic foam material[J]. Acta Materiae Compositae Sinica,2015,32(6):1688-1695(in Chinese).
    [22]
    ASTM International. Standard test method for measuring the minimum oxygen concentration to support candle-like combustion of plastics (oxygen index): ASTM D2863—19[S]. West Conshohocken: ASTM International, 2019.
    [23]
    中国国家标准化管理委员会. 塑料燃烧性能的测定水平法和垂直法: GB/T 2408—2008[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Plastics: Determination of burning characteristics: Horizontal and vertical test: GB/T 2408—2008[S]. Beijing: China Standards Press, 2009(in Chinese).
    [24]
    中国国家标准化管理委员会. 泡沫塑料及橡胶表观密度的测定: GB/T 6343—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Cellular plastics and rubbers: Determination of apparent density: GB/T 6343—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [25]
    中国国家标准化管理委员会. 非金属固体材料导热系数的测定热线法: GB/T 10297—2015[S]. 北京: 中国标准出版社, 2016.

    Standardization Administration of the People’s Republic of China. Test method for thermal conductivity of nonmetal solid materials: Hot-wire method: GB/T 10297—2015[S]. Beijing: China Standards Press, 2016(in Chinese).
    [26]
    中国国家标准化管理委员会. 硬质泡沫塑料压缩性能的测定: GB/T 8813—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Rigid cellular plastics: Determination of compression properties: GB/T 8813—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [27]
    王洪志. 离子液体改性空心材料阻燃TPU的研究[D]. 青岛: 青岛科技大学, 2018.

    WANG H Z. Study on flame retardant thermoplastic polyurethane based on modified hollow materials with ionic liquid[D]. Qingdao: Qingdao University of Science & Technology, 2018(in Chinese).
    [28]
    刘娟, 李青芳, 韩悦, 等. 磷/硅比值对硬质聚氨酯泡沫性能的影响[J]. 塑料, 2017, 46(2):54-57.

    LIU J, LI Q F, HAN Y, et al. Effect of the P/Si ratio on properties of rigid polyurethane foam[J]. Plastics,2017,46(2):54-57(in Chinese).
    [29]
    BIAN X C, TANG J H, LI Z M. Flame retardancy of hollow glass microsphere/rigid polyurethane foams in the presence of expandable graphite[J]. Journal of Applied Polymer Science,2008,109(3):1935-1943. doi: 10.1002/app.27786
    [30]
    CHATTOPADHYAY D K, WEBSTER D C. Thermal stability and flame retardancy of polyurethanes[J]. Progress in Polymer Science,2009,34(10):1068-1133. doi: 10.1016/j.progpolymsci.2009.06.002
    [31]
    YUAN Y, MA C, SHI Y Q, et al. Highly-efficient reinforcement and flame retardancy of rigid polyurethane foam with phosphorus-containing additive and nitrogen-containing compound[J]. Materials Chemistry and Physics,2018,211:42-53. doi: 10.1016/j.matchemphys.2018.02.007
    [32]
    MODESTI M, LORENZETTI A, BESCO S, et al. Synergism between flame retardant and modified layered silicate on thermal stability and fire behaviour of polyurethane nanocomposite foams[J]. Polymer Degradation and Stability,2008,93(12):2166-2171. doi: 10.1016/j.polymdegradstab.2008.08.005
    [33]
    YUAN Y, YU B, SHI Y Q, et al. Highly efficient catalysts for reducing toxic gases generation change with temperature of rigid polyurethane foam nanocomposites: A comparative investigation[J]. Composites Part A: Applied Science and Manufacturing,2018,112:142-154. doi: 10.1016/j.compositesa.2018.05.028
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article Metrics

    Article views (1129) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return