ZHAO Bingbing, FANG Yan, WU Kang, et al. Optimization design and validation of algae powder-penicillin residue/low density polyethylene composites formulation by response surface methodology[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1894-1903. DOI: 10.13801/j.cnki.fhclxb.20191206.001
Citation: ZHAO Bingbing, FANG Yan, WU Kang, et al. Optimization design and validation of algae powder-penicillin residue/low density polyethylene composites formulation by response surface methodology[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1894-1903. DOI: 10.13801/j.cnki.fhclxb.20191206.001

Optimization design and validation of algae powder-penicillin residue/low density polyethylene composites formulation by response surface methodology

More Information
  • Received Date: September 17, 2019
  • Accepted Date: December 02, 2019
  • Available Online: December 05, 2019
  • In order to realize the resource utilization of bloom algae and penicillin residue and further improve the mechanical properties of algae powder-penicillin residue/low density polyethylene (LDPE) composites, the mixture of penicillin residue with algae powder from Chao Lake and LDPE were used as the raw materials. The experimental scheme was designed by the response surface method, and the effects of the addition of polyethylene wax (PE-wax) and white oil, maleic anhydride grafted polyethylene (PE-g-MAH) and triethanolamine on the mechanical properties of the algae powder-penicillin residue/LDPE composites were studied. When the mass ratios of mixture of penicillin residue with algae powder and LDPE are 15.00% and 85.00%, the results of variance analysis of response surface regression equation show that the interaction between PE-g-MAH and triethanolamine is significant, but the interaction between lubricant and PE-g-MAH, lubricant and triethanolamine is not significant. The optimum process parameters predicted by the response surface regression model are as follows: when the mass ratios of lubricant, PE-g-MAH and triethanolamine are 3.08%, 4.33% and 4.23%, the tensile strength, flexural strength and flexural modulus of the algae powder-penicillin residue/LDPE composites are 12.30 MPa, 9.03 MPa and 220.00 MPa, respectively, which are increased by 10.81%, 29.74% and 34.97%, compared with the algae powder-penicillin residue/LDPE composites without additives.
  • [1]
    ELANDER R P. Industrial production of beta-lactam antibiotics[J]. Appl Microbiol Biotechnol,2003,61(5-6):385-392. DOI: 10.1007/s00253-003-1274-y
    [2]
    WISE R. Antimicrobial resistance: Priorities for action[J]. Journal of Antimicrobial Chemotherapy,2002,49(4):585-586. DOI: 10.1093/jac/49.4.585
    [3]
    李再兴, 田宝阔, 左剑恶, 等. 抗生素菌渣处理处置技术进展[J]. 环境工程, 2012, 30(2):72-75.

    LI Z X, TIAN B K, ZUO J E, et al. Progress in treat and disposal technology of antibiotic bacterial residues[J]. Environmental Engineering,2012,30(2):72-75(in Chinese).
    [4]
    付欢, 刘惠玲, 王璞. 高效降解青霉素菌的筛选鉴定及降解效果研究[J]. 环境保护科学, 2015, 41(1):42-45. DOI: 10.3969/j.issn.1004-6216.2015.01.009

    FU H, LIU H L, WANG P. Screening and identification of penicillin-degrading bacteria and its degradation effects[J]. Environmental Protection Science,2015,41(1):42-45(in Chinese). DOI: 10.3969/j.issn.1004-6216.2015.01.009
    [5]
    GUO B, GONG L, DUAN E, et al. Characteristics of penicillin bacterial residue[J]. Journal of the Air <italic>&</italic> Waste Management Association,2012,62(4):485-488.
    [6]
    张红娟. 抗生素菌渣堆肥化处理研究[D]. 郑州: 郑州大学, 2010.

    ZHANG H J. Research of the composting treatment of antibioticmushroom dregs[D]. Zhengzhou: Zhengzhou University, 2010 (in Chinese).
    [7]
    HILDEGARD E, KREUTZFELDT R. Process for the preparation of penicillin free mycelium masses from penicillin production culturesformed by fermentation, and the use as animal feeds and fertilizens: United States, 4601908[P]. 1986-07-22.
    [8]
    BANERJEE R K, SRINIVASAN K V. Recycling-reuse of penicillin mycelium as fish pond manure[J]. Biological Wastes,1988,23(2):107-116. DOI: 10.1016/0269-7483(88)90068-7
    [9]
    张红娟, 郭夏丽, 王岩. 林可霉素菌渣与牛粪联合堆肥实验研究[J]. 环境工程学报, 2011, 5(1):231-234.

    ZHANG H J, GUO X L, WANG Y. Study on co-composting of lincomycin fermentation dregs and cattle manure[J]. Chinese Journal of Environmental Engineering,2011,5(1):231-234(in Chinese).
    [10]
    苏建文, 王俊超, 许尚营, 等. 红霉素菌渣厌氧消化实验研究[J]. 中国沼气, 2013, 31(5):25-28. DOI: 10.3969/j.issn.1000-1166.2013.05.005

    SU J W, WANG J C, XU S Y, et al. Anaerobic digestion of bacterial residues from erythromycin production[J]. China Biogas,2013,31(5):25-28(in Chinese). DOI: 10.3969/j.issn.1000-1166.2013.05.005
    [11]
    张晔. 抗生素菌渣与煤粉配合成浆性能及燃烧动力学研究[D]. 淮南: 安徽理工大学, 2010.

    ZHANG Y. Study on performance and combustion kinetics of synthetic pulp of pntibiotic slag and coal powder[D]. Huainan: Anhui University of Science & Technology, 2010 (in Chinese).
    [12]
    高勤. 土霉素菌渣活性炭的制备及应用研究[D]. 石家庄: 河北科技大学, 2012.

    GAO Q. Study on preparation and application of oxytetracycline bacterial residue-activation carbon[D]. Shijiazhuang: Hebei University of Science and Technology, 2012 (in Chinese).
    [13]
    邵雪玲, 佐藤実 , 山口敏康, 等. 蓝藻Trichodesmium thiebautii营养成分分析[J]. 华中农业大学学报, 2001, 20(3):279-282. DOI: 10.3321/j.issn:1000-2421.2001.03.021

    SHAO X L, SATO M, YAMAGUCHI T, et al. Nutritious components analysis on Trichodesmium thiebautii[J]. Journal of Huazhong Agricultural University,2001,20(3):279-282(in Chinese). DOI: 10.3321/j.issn:1000-2421.2001.03.021
    [14]
    赵冰冰, 张发宇, 陈裕, 等. 四步盐析提取巢湖新鲜蓝藻中藻蓝蛋白及其稳定性[J]. 环境工程学报, 2016, 10(5):2302-2308. DOI: 10.12030/j.cjee.2016050

    ZHAO B B, ZHANG F Y, CHEN Y, et al. Extraction by four steps’ salting-out and stability of phycocyanin from fresh blue algae in Lake Chaohu[J]. Chinese Journal of Environmental Engineering,2016,10(5):2302-2308(in Chinese). DOI: 10.12030/j.cjee.2016050
    [15]
    牛娜, 罗学刚, 李纪伟, 等. 胶原蛋白/低密度聚乙烯复合材料的制备与性能[J]. 复合材料学报, 2014, 31(4):944-948.

    NIU N, LUO X G, LI J W, et al. Preparation and performance of hydrolyzed collagen/low density polyethylene composites[J]. Acta Materiae Compositae Sinica,2014,31(4):944-948(in Chinese).
    [16]
    盛旭敏, 李又兵, 王选伦, 等. 食用级淀粉/低密度聚乙烯复合材料研究[J]. 重庆理工大学学报, 2011, 25(2): 37-42.

    SHENG X M, LI Y B, WANG X L, et al. Study on composite material of LDPE and edible starch[J]. Journal of Chongqing University of Technology, 2011, 25(2): 37-42(in Chinese).
    [17]
    陈李红. 天然蛋白质可降解热塑膜及纺织浆料的制备与性能研究[D]. 上海: 东华大学, 2013.

    CHEN L H. Research on preparation and performance of biodegradable thermoplastic films and textile sizes from natural proteins[D]. Shanghai: Donghua University, 2013 (in Chinese).
    [18]
    CHALERMTHAI B, CHAN W Y, BASTIDAS-OYANEDEL J R, et al. Preparation and characterization of whey protein-based polymers produced from residual dairy streams[J]. Polymers,2019,11(4):722-732. DOI: 10.3390/polym11040722
    [19]
    彭旭锵. PP/超细羽绒粉体共混改性及可纺性研究[D]. 武汉: 武汉科技学院, 2007.

    PENG X Q. Study on blending modification and spinnability of PP/superfine down powder[D]. Wuhan: Wuhan University of Science and Engineering, 2007(in Chinese).
    [20]
    朱凌波, 李新功, 杨凯, 等. 几种不同改性剂对稻草/丙烯腈-丁二烯-苯乙烯复合材料性能的影响[J]. 复合材料学报, 2018, 35(7):1791-1799.

    ZHU L B, LI X G, YANG K, et al. Performance enhancement of straw / acrylonitrile-butadiene-styrene composites modified by several different kinds of modifiers[J]. Acta Materiae Compositae Sinica,2018,35(7):1791-1799(in Chinese).
    [21]
    中国国家标准化管理委员会. 塑料拉伸性能的测定: GB/T 1040.2—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the Peoples Republic of China. Plastic the measurement of tensile properties: GB/T 1040.2—2006[S]. Beijing: Standards Press of China, 2006 (in Chinese).
    [22]
    中国国家标准化管理委员会. 塑料弯曲性能试验方法: GB/T 9341—2000[S]. 北京: 中国标准出版社, 2000.

    Standardization Administration of the Peoples Republic of China. Plastic determination of flexural properties: GB/T 9341—2000[S]. Beijing: Standards Press of China, 2000 (in Chinese).
    [23]
    VUONG Q V, GOLDING J B, NGUYEN M H, et al. Production of caffeinated and decaffeinated green tea catechin powders from underutilised old tea leaves[J]. Journal of Food Engineering,2012,110:1-8.
    [24]
    ZHANG Q A, YUE X F, FAN X H, et al. Response surface optimization of ultrasound-assisted oil extraction from autoclaved almond powder[J]. Food Chemistry,2009,116:513-518.
    [25]
    熊勇, 李冬梅, 刘江波, 等. 响应面法分析优化藻蓝蛋白色素提取工艺的研究[J]. 中国食品添加剂, 2018(11):107-112.

    XIONG Y, LI D M, LIU J B, et al. Optimization of the extraction technology of phycocyanin from Spirulina using response surface methodology[J]. China Food Additives,2018(11):107-112(in Chinese).
    [26]
    NAKA K, NAKANMURA T, OHKI A, et al. Chitin-graft-poly(2-methyl-2-oxazoline) enhanced solubility and activity of catalase in organic solvent[J]. International Journal of Biological Macromolecules,1998,23(4):14-17.
    [27]
    PAWLAK A, MUCHA A. Thermogravimetric and FTIR studies of chitosan blends[J]. Thermochimica Acta,2003,296(1-2):14-17.
  • Related Articles

    [1]LI Yunbo, LI Zongli, YAO Xiwang, XIAO Shuaipeng, LIU Shida, TONG Taotao. Interaction direct deduction prediction model of thermal conductivity of dry cement mortar with mixed defects of cavities and cracks[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 361-370. DOI: 10.13801/j.cnki.fhclxb.20210328.002
    [2]LIU Shulong, WANG Fagang, LI Gongcheng, LIU Guolei, WANG Jie, QI Zhaojun. Optimization of mixture ratio and microstructure influence mechanism of composite filling slurry based on response surface method[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2724-2736. DOI: 10.13801/j.cnki.fhclxb.20201013.001
    [3]XIAO Huaqiang, ZHAO Sihao. Corrosion-wear behavior and synergy mechanism of Ti3AlC2-Al2O3/TiAl3 composite in molten aluminum[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2501-2511. DOI: 10.13801/j.cnki.fhclxb.20200111.003
    [4]GUO Bingbing, QIAO Guofu, OU Jinping, LIU Junlong. Chloride transport model for cement-based materials considering ion-cement hydrate interactions[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3526-3533. DOI: 10.13801/j.cnki.fhclxb.20180402.001
    [5]HE Fan, LI Wenpeng, YOU Jianhua, YUAN Tianyuan, YANG Xiaohong, LIAO Shuangquan. Effect of liquid natural rubber on interfacial interactions of SiO2/NR composites prepared by wet mixing method[J]. Acta Materiae Compositae Sinica, 2018, 35(1): 185-191. DOI: 10.13801/j.cnki.fhclxb.20170418.005
    [6]SONG Jie, ZHANG Min, XU Xiaoling, MA Xiaoyan. Interface interaction of Scutellaria baicalensis Georgi extracts/PBS composites and its performance[J]. Acta Materiae Compositae Sinica, 2016, 33(9): 2013-2021. DOI: 10.13801/j.cnki.fhclxb.20151211.003
    [7]YUAN Zhenyi, WANG Yongjun, WANG Junbiao, WEI Shengmin. Numerical model on curing deformation of composite part based on tool-part interaction[J]. Acta Materiae Compositae Sinica, 2016, 33(4): 902-909. DOI: 10.13801/j.cnki.fhclxb.20150729.002
    [8]XU Xiaoling, ZHANG Min, LI Chengtao, SONG Jiqing, HE Wenqing. Interactions between modified PBS and cellulose derivatives in liquid composites with molecular simulation[J]. Acta Materiae Compositae Sinica, 2015, 32(6): 1649-1657. DOI: 10.13801/j.cnki.fhclxb.20150302.002
    [9]TANG Wen-yong, ZHANG Sheng-kun, CHEN Tie-yun. ANALYSIS OF NONLINEAR DYNAMIC SOLID- FLUID INTERACTION RESPONSE OF A LAMINATED COMPOSITE PLATE[J]. Acta Materiae Compositae Sinica, 2000, 17(1): 93-97.
    [10]Xiang Chen, Chen Haoran, Guo Zhaopu. FLUID-STRUCTURE INTERACTION VIBRATION AND DYNAMIC RESPONSE OF COMPOSITE STIFFENED STRUCTURES[J]. Acta Materiae Compositae Sinica, 1996, 13(3): 100-104.
  • Cited by

    Periodical cited type(3)

    1. 廖承钢,阮久锠,李新功,左迎峰. 氧化麦秸/聚乳酸复合材料力学性能的响应面工艺优化. 复合材料学报. 2024(04): 2065-2073 . 本站查看
    2. 刘树龙,王发刚,李公成,刘国磊,王劼,齐兆军. 基于响应面法的复合充填料浆配比优化及微观结构影响机制. 复合材料学报. 2021(08): 2724-2736 . 本站查看
    3. 冯岳璐,王浩,杨小渝,靳凯,万萌. 高通量计算筛选的材料设计接口应用软件. 计算机系统应用. 2020(11): 104-113 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (1072) PDF downloads (31) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return