Volume 37 Issue 7
Aug.  2020
Turn off MathJax
Article Contents
SUN Wei, BAI Yuelei, ZHANG Qiang, et al. Micro-morphology and mechanical properties of carbon nanotubes-Ti3AlC2/AZ91D composites[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1649-1656. doi: 10.13801/j.cnki.fhclxb.20191128.002
Citation: SUN Wei, BAI Yuelei, ZHANG Qiang, et al. Micro-morphology and mechanical properties of carbon nanotubes-Ti3AlC2/AZ91D composites[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1649-1656. doi: 10.13801/j.cnki.fhclxb.20191128.002

Micro-morphology and mechanical properties of carbon nanotubes-Ti3AlC2/AZ91D composites

doi: 10.13801/j.cnki.fhclxb.20191128.002
  • Received Date: 2019-08-27
  • Accepted Date: 2019-11-01
  • Available Online: 2019-11-28
  • Publish Date: 2020-07-15
  • Carbon nanotubes(CNTs) and Ti3AlC2 reinforced phase was surface modified by electroless copper plating. The CNTs-Ti3AlC2/AZ91D composites was prepared by hot pressing (HP) sintering. The microstructure, mechanical properties and strengthening mechanism of the CNTs-Ti3AlC2/AZ91D composites were studied.The results indicate that the main physical phases in the CNTs-Ti3AlC2/AZ91D composite are CNTs, Ti3AlC2, Mg and Al12Mg17, and the reinforced phase is uniformly distributed in the matrix. There is a U phase (MgAlCu) at the interface between the reinforced phase and the matrix, which can make the interface of the two well combined. When the reinforced phase content is CNTs (1wt%) and Ti3AlC2 (25wt%), compared with magnesium alloyAZ91D, the elasticity modulus, tensile strength, yield strength and elongation of the CNTs-Ti3AlC2/AZ91D composites are increased by 120.30%, 25.72%, 126.50% and 36.84%, respectively, and the flexural strength and compression strength are 337.92 MPa and 436.27 MPa. The fracture mode of the CNTs-Ti3AlC2/AZ91D composites is brittle fracture, and the strengthening mechanism is mainly thermal mismatch strengthening, Orowan strengthening and fine grain strengthening.

     

  • loading
  • [1]
    李维学, 祝杰, 戴剑锋, 等. 碳纳米管增强镁基复合材料强化机制的解析法研究[J]. 材料导报, 2012, 26(4):131-135. doi: 10.3969/j.issn.1005-023X.2012.04.035

    LI Weixue, ZHU Jie, DAI Jianfeng, et al. An analytical solution for strengthening mechanisms of carbon nanotube reinforced magnesium matrix composites[J]. Materials Review,2012,26(4):131-135(in Chinese). doi: 10.3969/j.issn.1005-023X.2012.04.035
    [2]
    WANG Y, XU Y, CAO Z, et al. A facile process to manufacture high performance copper layer on ceramic material via biomimetic modification and electroless plating[J]. Composites Part B: Engineering,2019,157:123-130.
    [3]
    ELBASUNEY S, ZAKY M G, RADWAN M, et al. Synthesis of CuO nanocrystals supported on multiwall carbon nanotubes for nanothermite applications[J]. Journal of Inorganic and Organometallic Polymers and Materials,2019,29:1407-1416.
    [4]
    GOC K, PRENDOTA W, CHLUBNY L, et al. Structure, morphology and electrical transport properties of the Ti3AlC2 materials[J]. Ceramics International,2018,44(15):18322-18328. doi: 10.1016/j.ceramint.2018.07.045
    [5]
    LIU Y S, GAO P F, ZHANG Y Q, et al. Fabrication of carbon nanotubes reinforced AZ91D composites by ultrasonic processing[J]. Transactions of Nonferrous Metals Society of China (English Edition),2010,20(7):1222-1227.
    [6]
    YAO X, KOU X, QIU J. Acidified multi-wall carbon nanotubes/polyaniline composites with high negative permittivity[J]. Organic Electronics,2016,38:55-60. doi: 10.1016/j.orgel.2016.07.033
    [7]
    YU W B, WANG X J, ZHAO H B, et al. Microstructure, mechanical properties and fracture mechanism of Ti2AlC reinforced AZ91D composites fabricated by stir casting[J]. Journal of Alloys and Compounds,2017,702:199-208. doi: 10.1016/j.jallcom.2017.01.231
    [8]
    GOH C S, WEI J, LEE L C, et al. simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes[J]. Materials Science and Engineering A,2006,423(1-2):153-156. doi: 10.1016/j.msea.2005.10.071
    [9]
    SIMAR A, MERTENS A, RYELANDT S, et al. Mean-field model analysis of deformation and damage in friction stir processed Mg-C composites[J]. Materials Science and Engineering A,2018,723:324-333. doi: 10.1016/j.msea.2018.03.043
    [10]
    ANASORI B, CASPI E A N, BARSOUM M W. Fabrication and mechanical properties of pressureless melt infiltrated magnesium alloy composites reinforced with TiC and Ti2AlC particles[J]. Materials Science and Engineering A,2014,618:511-522. doi: 10.1016/j.msea.2014.09.039
    [11]
    ARAVINDAN S, RAO P V, PONAPPA K. Evaluation of physical and mechanical properties of AZ91D/SiC composites by two step stir casting process[J]. Journal of Magnesium and Alloys,2015,3(1):52-62. doi: 10.1016/j.jma.2014.12.008
    [12]
    BARSOUM M W, ZHEN T, KALIDINDI S R, et al. Fully reversible, dislocation-based compresive deformation of Ti3SiC2 to 1 GPa[J]. Nature Materials,2003,2(2):107-111. doi: 10.1038/nmat814
    [13]
    GRUBER J, LANG A C, GRIGGS J, et al. Evidence for bulk ripplocations in layered solids[J]. Scientific Reports,2016,6:33451. doi: 10.1038/srep33451
    [14]
    CAMPBELL J. The origin of griffith cracks[J]. Metallurgical & Materials Transactions B,2011,42(6):1091-1097.
    [15]
    JHON Y I, KIM C, SEO M, et al. Tensile characterization of single-walled carbon nanotubes with helical structural defects[J]. Scientific Reports,2016,6:20324. doi: 10.1038/srep20324
    [16]
    CLYNE T W, WITHERS P J. An introduction to metal matrix composites[M]. New York: Cambridge University Press, 1993.
    [17]
    ASHBY M F. The deformation of plastically non-homogeneous materials[J]. Philosophical Magazine,1970,21(170):399-424. doi: 10.1080/14786437008238426
    [18]
    GLADMAN T. Precipitation hardening in metals[J]. Materials Science and Technology,1999,15(1):30-36. doi: 10.1179/026708399773002782
    [19]
    FRANÇOIS L, JÉRÔME W, RICHETON T. Hall-petch law revisited in terms of collective dislocation dynamics[J]. Physical Review Letters,2006,97(7):075504. doi: 10.1103/PhysRevLett.97.075504
    [20]
    余永宁. 材料科学基础[M]. 北京: 高等教育出版社, 2006.

    XU Yongning. Material science foundation[M]. Beijing: Higher Education Press, 2006(in Chinese).
    [21]
    DYBKOV V I. Reaction diffusion and solid statechemical kinetics[M]. Ukraine: The IPMS Publications, 2002.
    [22]
    MURRAY J L. Phase diagrams of binary magnesium alloys[M]. Ohio: ASM International, 1998.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (804) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return