Volume 37 Issue 7
Aug.  2020
Turn off MathJax
Article Contents
ZHU Bin, LIU Pan, LV Dongfeng, et al. Preparation and electrochemistry properties of NiCo2O4 nanowire/SiC composite fiber[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1684-1694. doi: 10.13801/j.cnki.fhclxb.20191121.001
Citation: ZHU Bin, LIU Pan, LV Dongfeng, et al. Preparation and electrochemistry properties of NiCo2O4 nanowire/SiC composite fiber[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1684-1694. doi: 10.13801/j.cnki.fhclxb.20191121.001

Preparation and electrochemistry properties of NiCo2O4 nanowire/SiC composite fiber

doi: 10.13801/j.cnki.fhclxb.20191121.001
  • Received Date: 2019-08-04
  • Accepted Date: 2019-11-20
  • Available Online: 2019-11-21
  • Publish Date: 2020-07-15
  • The β-SiC fibers with high degree of crystallinity were obtained by electrospinning combined with carbothermal reduction method using tetraethyl orthosilicate (TEOS) as silicon source and polyvinylpyrrolidone (PVP) as spinning agent. The specific surface area of β-SiC fibers is 92.6 m2/g, which show the electric double layer capacitance. The specific capacitance of β-SiC fibers is up to 155.7 F/g. A large number of NiCo2O4 nanowires with a diameter of about 15 nm were grown on the surface of SiC fibers via hydrothermal method in order to obtain NiCo2O4 nanowires/SiC composite fibers. The results show that nickel and cobalt elements are present in the form of Ni2+/Ni3+ and Co2+/Co3+, respectively. The specific capacitance is significantly improved by the synergistic effect of NiCo2O4 nanowires and SiC fiber, and the NiCo2O4 nanowires/SiC composite fibers show both electric double layer and pseudo capacitance. The specific capacitance of NiCo2O4 nanowires/SiC composite fibers is up to 300.3 F/g. When the power density is 58.1 W/kg, the energy density of NiCo2O4 nanowires/SiC composite fibers is 60.1 W·h/kg.

     

  • loading
  • [1]
    MANN M E, BRADLEY R S, HUGHES M K. Global-scale temperature patterns and climate forcing over thepast six centuries[J]. Nature,1998,392:779-787. doi: 10.1038/33859
    [2]
    MILLER J R, SIMON P. Electrochemical capacitors for energy management[J]. Science,2008,321(5889):651-652. doi: 10.1126/science.1158736
    [3]
    YANG P H, CHAO D L, ZHU C R, et al. Ultrafast-Charging supercapacitors based on corn-like titanium nitride nanostructures[J]. Advanced Science,2016,3(6):1500299. doi: 10.1002/advs.201500299
    [4]
    GUO X, YAN K, FAN F, et al. Controllable synthesis of a NiO hierarchical microspheres/nanofibers composites assembled on nickel foam for supercapacitor[J]. Materials Letters,2019,240:62-65. doi: 10.1016/j.matlet.2018.12.117
    [5]
    CAI G F, WANG X, CUI M Q, et al. Electrochromo-supercapacitor based on direct growth of NiO nanoparticles[J]. Nano Energy,2015,12:258-267. doi: 10.1016/j.nanoen.2014.12.031
    [6]
    HU H, GUAN B Y, XIA B Y, et al. Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced-pseudocapacitive and electrocatalytic properties[J]. Journal of the American Chemical Society,2015,137(16):5590-5595. doi: 10.1021/jacs.5b02465
    [7]
    KUMAR M, SUBRAMANIA A, BALAKRISHNAN K. Preparation of electrospun Co3O4 nanofibers as electrode material for high performance asymmetric supercapacitors[J]. Electrochimica Acta,2014,149:152-158. doi: 10.1016/j.electacta.2014.10.021
    [8]
    ZHAO J, LI Z, YUAN X, et al. A high-energy density asymmetric supercapacitor based on Fe2O3 nanoneedle arrays and NiCo2O4 /Ni(OH)2 hybrid nanosheetarrays grown on SiC nanowire networks as free-standing advanced electrodes[J]. Advanced Energy Materials,2018,8(12):1702787. doi: 10.1002/aenm.201702787
    [9]
    YI H, CHEN X, WANG H W, et al. Hierarchical TiN@Ni(OH)2 core/shell nanowire arrays for supercapacitor application[J]. Electrochim Acta,2014,116:372-378. doi: 10.1016/j.electacta.2013.11.083
    [10]
    YANG S, SONG X, ZHANG P, et al. Self-assembled α-Fe2O3 mesocrystals/graphene nano hybrid for enhanced electrochemical capacitors[J]. Small,2014,10(11):2270-2279. doi: 10.1002/smll.201303922
    [11]
    YANG S, LIN Y, SONG X, et al. Covalently coupled ultrafine H-TiO2 nanocrystals/nitrogen-doped graphene hybrid materials for high-performance supercapacitor[J]. ACS Applied Materials & Interfaces,2015,7(32):17884-17892.
    [12]
    CHAUDHARI N K, CHAUDHARI S, YU J S. Cube-like α-Fe2O3 supported o nordered multimodal porous carbon as high performance electrode material for super-capacitors[J]. ChemSusChem,2014,7(11):3102-3111. doi: 10.1002/cssc.201402526
    [13]
    YANG X, SUN H, ZHANG L, et al. High efficient photo-fentoncatalyst of α-Fe2O3/MoS2 hierarchical nanoheterostru ctures: Reutilization for supercapacitors[J]. Scientific Reports,2016,6(1):31591. doi: 10.1038/srep31591
    [14]
    LEE J H, LIM J Y, CHANG S L, et al. Direct growth of NiO nanosheets on mesoporous TiN film for energy storage devices[J]. Applied Surface Science,2017,420:849-857. doi: 10.1016/j.apsusc.2017.05.216
    [15]
    XIE S, GUO X N, JIN G Q, et al. In situ grafted carbon on sawtooth-like SiC supported Ni for high-performance supercapacitor electrodes[J]. Chemical Communications,2014,50(2):228-230. doi: 10.1039/C3CC47019A
    [16]
    MYEONGJIN K, JOOHEON K. Synergistic interaction between pseudocapacitive Fe3O4 nanoparticles and highly porous silicon carbide for high-performance electrodesas electrochemical supercapacitors[J]. Nanotechnology,2017,28(19):195401. doi: 10.1088/1361-6528/aa6812
    [17]
    KIM M, YOO Y, KIM J. Synthesis of microsphere silicon carbide/nanoneedle manganese oxide composites and their electrochemical properties as supercapacitors[J]. Journal of Power Sources,2014,265:214-222. doi: 10.1016/j.jpowsour.2014.04.132
    [18]
    KIM M, KIM J. Redox active KI solid-state electrolyte for battery-like electrochemical capacitive energy storage based on MgCo2O4 nanoneedles on porous β-polytype silicon carbide[J]. Electrochimica Acta,2018,260:921-931. doi: 10.1016/j.electacta.2017.12.069
    [19]
    ZHAO J, LI Z J, ZHANG M, et al. Direct growth of ultrathin NiCo2O4/NiO nanosheetson SiC nanowires as a free-standing advanced electrode for high-performance asymmetric supercapacitors[J]. Acs Sustainable Chemistry & Engineering,2016,4(7):3598-3608.
    [20]
    颜贵龙. 碳化硅微纳米纤维的制备及其性能研究[D]. 天津: 天津工业大学, 2012.

    YAN G L. Preparation and properties of silicon carbide micro-nano fibers[D]. Tianjin: Tianjin Polytechnic University, 2012(in Chinese).
    [21]
    ZHAO Y X, KANG W, LI L, et al. Solution blown silicon carbide porous nanofiber membrane as electrode materials for supercapacitors[J]. Electrochimica Acta,2016,207:257-265. doi: 10.1016/j.electacta.2016.05.003
    [22]
    CHEN H, SU Y Z, KUANG P Y, et al. Hierarchical NiCo2O4 nanosheets decorated carbon nanotubes towards highly efficient electrocatalyst for water oxidation[J]. Journal of Materials Chemistry A,2015,3(38):19314-19321.
    [23]
    XIONG L P, XU Y S, LI Y. Performance of SiC fibers synthesized with neutron irradiation curing method[J]. Nuclear Techniques,2009,32(9):675-678.
    [24]
    KOLATHODI M S, PALEI M, NATARAJAN T S. Electrospun NiO nanofibers as cathode materials for high performance asymmetric supercapacitors[J]. Journal of Materials Chemistry A,2015,3(14):7513-7522. doi: 10.1039/C4TA07075E
    [25]
    闻刚. 纳米氮化钛膜的制备及其在全钒液流电池中的应用[D]. 杭州: 浙江工业大学, 2017.

    WEN G. Preparation of nano titaniumnitride film and its application in all vanadium redox flow battery[D]. Hangzhou: ZhejiangUniversity of Technology, 2017(in Chinese).
    [26]
    李玲, 张雪, 李晶, 等. 碳纳米纤维负载Co3S4复合材料的合成及其在染料敏化太阳电池对电极的应用[J]. 无机化学学报, 2017, 33(4):607-614. doi: 10.11862/CJIC.2017.084

    LI L, ZHANG X, LI J, et al. Synthesis of carbon nanofiber-loaded Co3S4 composite and its application in dye-sensitized solar cell counter electrode[J]. Journal of Inorganic Chemistry,2017,33(4):607-614(in Chinese). doi: 10.11862/CJIC.2017.084
    [27]
    LIU X Y, ZHANG Y Q, XIA X H, et al. Self-assembled porous NiCo2O4 hetero-structure array for electrochemical capacitor[J]. Journal of Power Sources,2013,239:157-163.
    [28]
    米娟, 李文翠. 不同测试技术下超级电容器比电容值的计算[J]. 电源技术, 2014, 38(7):1394-1398. doi: 10.3969/j.issn.1002-087X.2014.07.064

    MI J, LI W C. Capacitance calculation of supercapacitors based on different test technologies[J]. Chinese Journal of Power Sources,2014,38(7):1394-1398(in Chinese). doi: 10.3969/j.issn.1002-087X.2014.07.064
    [29]
    李飞贞, 高康乐, 解迪, 等. 活性炭负载铁钴电催化氧化焦化废水生化尾水的研究[J]. 环境污染与防治, 2017, 39(4):356-361.

    LI F Z, GAO K L, XIE D, et al. Study on electrolytic oxidation of biochemical tail water from coking waste water by activated carbon supported iron and cobalt[J]. Environmental pollution and prevention,2017,39(4):356-361(in Chinese).
    [30]
    XIE S, TONG X L, JIN G Q, et al. CNT-Ni/SiC hierarchical nanostructures: Preparation and their application in electrocatalytic oxidation of methanol[J]. Journal of Materials Chemistry A,2013,1(6):2104-2109. doi: 10.1039/C2TA01002J
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (1112) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return