Volume 37 Issue 7
Aug.  2020
Turn off MathJax
Article Contents
DING Meijie, ZHANG Xudong, WEI Zhiqiang, et al. Optical properties of MnFe2O4/reduced graphene oxide nanocomposites[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1713-1720. doi: 10.13801/j.cnki.fhclxb.20191030.002
Citation: DING Meijie, ZHANG Xudong, WEI Zhiqiang, et al. Optical properties of MnFe2O4/reduced graphene oxide nanocomposites[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1713-1720. doi: 10.13801/j.cnki.fhclxb.20191030.002

Optical properties of MnFe2O4/reduced graphene oxide nanocomposites

doi: 10.13801/j.cnki.fhclxb.20191030.002
  • Received Date: 2019-07-18
  • Accepted Date: 2019-09-24
  • Available Online: 2019-10-30
  • Publish Date: 2020-07-15
  • The nanoscale spinel structure metal oxide possesses broad application prospect due to its unique crystal structure and band structure. The MnFe2O4/reduced graphene oxide (rGO) nanocomposites were synthesized by hydrothermal method, the crystal structure, morphology, element distribution, binding energy and optical properties were characterized by XRD, high-resolution transmission electron microscope (HRTEM), energy dispersive X-ray spectrometer (EDX), FTIR, XPS, Raman spectroscopy (Raman), photoluminescence spectroscopy (PL) and UV-vis diffuse reflection spectroscopy (UV-vis DRS). The results show that the MnFe2O4/rGO nanocomposites prepared by this method have cubic spinel structure. The morphology is irregular ellipsoid with uniform particle size. MnFe2O4 nanoparticles loaded on the surface of rGO are partially coated with graphene, possessing small particle size and good dispersion. The MnFe2O4/rGO nanocomposites exhibit lower recombination efficiency of electron-hole pairs. The graphene has more defects and higher disorder degree. The oxygen-containing groups are partially reduced by polyvinyl pyrrolidone (PVP), and the quantity is greatly reduced. The band gap of MnFe2O4/rGO composite is narrower than that of pure MnFe2O4, resulting in red shift.

     

  • loading
  • [1]
    SICKAFUS K E, WILLS J M, GRIMES N W. Structure of spinel[J]. Journal of the American Ceramic Society,2010,82(12):3279-3292.
    [2]
    ZHU X L, WEI Z Q, ZHAO W H, et al. Microstructure and electrochemical properties of ZnMn2O4 nanopowder synthesized using different surfactants[J]. Journal of Electronic Materials,2018,47(11):6428-6436. doi: 10.1007/s11664-018-6544-7
    [3]
    ZHU X L, WEI Z Q, ZHAO W H, et al. Preparation and characterization of Zn1-xNixFe2O4 nanoparticles with spinel structure synthesized by hydrothermal method[J]. Current Nanoscience,2018,14(6):474-480. doi: 10.2174/1573413714666180528074117
    [4]
    ZHEN L, HE K, XU C Y, et al. Synthesis and characterization of single-crystalline MnFe2O4 nanorods via a surfactant-free hydrothermal route[J]. Journal of Magnetism & Magnetic Materials,2008,320(21):2672-2675.
    [5]
    LIN X M, LV X, WANG L M, et al. Preparation and characterization of MnFe2O4 in the solvothermal process: Their magnetism and electrochemical properties[J]. Materials Research Bulletin,2013,48(7):2511-2516. doi: 10.1016/j.materresbull.2013.03.010
    [6]
    PHUMYING S, LABUAYAI S, SWATSITANG E, et al. Nanocrystalline spinel ferrite (MFe2O4, M=Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route[J]. Materials Research Bulletin,2013,48(6):2060-2065. doi: 10.1016/j.materresbull.2013.02.042
    [7]
    HOU X Y, FENG J, REN Y M, et al. Synthesis and adsorption properties of spongelike porous MnFe2O4[J]. Colloids and Surfaces A: Physicochem. Engineering Aspects,2010,363(1-3):1-7. doi: 10.1016/j.colsurfa.2010.03.016
    [8]
    GAUTAM S, SHANDILYA P, PRIYA B, et al. Superparamagnetic MnFe2O4 dispersed over graphitic carbon sand composite and bentonite as magnetically recoverable photocatalyst for antibiotic mineralization[J]. Separation and Purification Technology,2017,172:498-511. doi: 10.1016/j.seppur.2016.09.006
    [9]
    XU H Y, LI B, SHI T N, et al. Nanoparticles of magnetite anchored onto few-layer graphene: A highly efficient Fenton-like nanocomposite catalyst[J]. Journal of Colloid and Interface Science,2018,532:161-170. doi: 10.1016/j.jcis.2018.07.128
    [10]
    SUN Z M, YAO G Y, LIU M Y, et al. In situ synthesis of magnetic MnFe2O4/diatomite nanocomposite adsorbent and its efficient removal of cationic dyes[J]. Journal of the Taiwan Institute of Chemical Engineers,2017,71:501-509.
    [11]
    WANG X Y, WANG A Q, MA J. Visible-light-driven photocatalytic removal of antibiotics by newly designed C3N4@MnFe2O4-graphene nanocomposites[J]. Journal of Hazardous Materials,2017,336:81-92.
    [12]
    MEENA S, RENUKA L, ANANTHARAJUB K S, et al. Optical, electrochemical and photocatalytic properties of sunlight driven Cu doped manganese ferrite synthesized by solution combustion synthesis[J]. Materialstoday: Proceedings,2017,4(11):11773-11781. doi: 10.1016/j.matpr.2017.09.094
    [13]
    NAGARAJAN V, THAYUMANAVAN A. Spray deposited MnFe2O4 thin films for detection of ethanol and acetone vapors[J]. Applied Surface Science,2018,428:748-756. doi: 10.1016/j.apsusc.2017.09.156
    [14]
    WANG Z M, MA H, ZHANG C, et al. Enhanced catalytic ozonation treatment of dibutyl phthalate enabled by porous magnetic Ag-doped ferrospinel MnFe2O4 materials: Performance and mechanism[J]. Chemical Engineering Journal,2017,354:42-52.
    [15]
    LIANG C, LIU Y H, KUN L, et al. Heterogeneous photo-Fenton degradation of organic pollutants with amorphous Fe-Zn-oxide/hydrochar under visible light irradiation[J]. Separation and Purification Technology,2017,188:105-111. doi: 10.1016/j.seppur.2017.07.027
    [16]
    SHARMA R, BANSAL S, SINGHALSONAL. Tailoring the photo-Fenton activity of spinelferrites (MFe2O4) by incorporating different cations (M=Cu, Zn Ni and Co) in the structure[J]. RSC Advances,2015,5(8):6006-6018. doi: 10.1039/C4RA13692F
    [17]
    TAKAMURA H, SUGAI H, WATANABE M, et al. Oxygen permeation properties and surface modification of acceptor-doped CeO2/MnFe2O4 composites[J]. Journal of Electroceramics,2006,17(2-4):741-748. doi: 10.1007/s10832-006-7776-0
    [18]
    YAMAGUCHI N U, BERGAMASCO R, HAMOUDI S. Magnetic MnFe2O4-graphene hybrid composite for efficient removal of glyphosate from water[J]. Chemical Engineering Journal,2016,295:391-402. doi: 10.1016/j.cej.2016.03.051
    [19]
    TRAN V T, VU D T. Influence of temperature on structure, morphology, and magnetic property of graphene-MnFe2O4 nanocomposites synthesized by a combined hydrothermal co-precipitation method[J]. Applied Physics A,2018,124:675.
    [20]
    BAGHERZADEH M, KAVEH R. New magnetically recyclable reduced graphene oxide rGO/MFe2O4 (M=Ca, Mg)/Ag3PO4 nanocomposites with remarkably enhanced visible-light photocatalytic activity and stability[J]. Photochemistry and Photobiology,2018,94(6):1210-1224.
    [21]
    GUO Y L, ZHANG L L, LIU X Y, et al. Synthesis of magnetic core-shell carbon dots@MFe2O4 (M=Mn, Zn and Cu) hybrid materials and their catalytic properties[J]. Journal Materials Chemistry A,2016,4(11):4044-4055.
    [22]
    SHOJAAT R, SAADAJOO N, KARIMI A, et al. Simultaneous adsorption-degradation of organic dyes using MnFe2O4/calcium alginate nano-composites coupled with GOx and Laccase[J]. Journal of Environmental Chemical Engineering,2016:S2213343716300732.
    [23]
    JIANG J L, HE X X, DU J F, et al. Insitu fabrication of graphene-nickel matrix composites[J]. Materials Letters,2018,220:178-181. doi: 10.1016/j.matlet.2018.03.039
    [24]
    BI T T, FANG H Q, JIANG J L, et al. Enhance supercapacitive performance of MnO2/3D carbon nanotubes-graphene as a binder-free electrode[J]. Journal of Alloys and Compounds,2019,787:759-766. doi: 10.1016/j.jallcom.2019.02.117
    [25]
    ISHANI M, DEKAMIN M G, ALIREZVANI Z. Superparamagnetic silica core-shell hybrid attached to grapheme oxide as a promising recoverable catalyst for expeditious synthesis of TMS-protected cyanohydrins[J]. Journal of Colloid and Interface Science,2018,521:232-241. doi: 10.1016/j.jcis.2018.02.060
    [26]
    LUO P H, GUAN X F, YU Y L, et al. New insight into electrooxidation of graphene into graphene quantum dots[J]. Chemical Physics Letters,2017,690:129-132. doi: 10.1016/j.cplett.2017.10.047
    [27]
    CUEVAS M S, OLLER I, AGÜERA A, et al. Strategies for reducing cost by using solar photo-Fenton treatment combined with nanofiltration to remove microcontaminants in real municipal effluents: Toxicity and economic assessment[J]. Chemical Engineering Journal,2017,318:161-170. doi: 10.1016/j.cej.2016.06.031
    [28]
    WANG P J, WANG L Q, SUN Q, et al. Preparation and performance of Fe3O4@hydrophilicgraphene composites with excellent photo-Fenton activity for photocatalysis[J]. Materials Letters,2016,183:61-64. doi: 10.1016/j.matlet.2016.07.080
    [29]
    MALIYEKKAL S M, SREEPRASAD T S, KRISHNAN D, et al. Graphene: A reusable substrate for unprecedented adsorption of pesticides[J]. Small,2013,9(2):273-283. doi: 10.1002/smll.201201125
    [30]
    XIONG P, HU C Y, FAN Y, et al. Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance[J]. Journal of Power Sources,2014,266:384-392. doi: 10.1016/j.jpowsour.2014.05.048
    [31]
    YAN Y X, YANG H, ZHAO X X, et al. Enhanced photocatalytic activity of surface disorder-engineered CaTiO3[J]. Materials Research Bulletin,2018,105:286-290. doi: 10.1016/j.materresbull.2018.05.008
    [32]
    ZHAO W H, WEI Z Q, WU X J, et al. Cr doped SnS2 nanoflowers: Preparation, characterization and photocatalytic decolorization[J]. Materials Science in Semiconductor Processing,2018,88(4):173-180.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (1727) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return