Volume 37 Issue 5
May  2020
Turn off MathJax
Article Contents
HU Xiaolan, ZHOU Chuan, DAI Shaowei, et al. Micro-structures and dynamic thermal mechanical properties of graphene oxide modified carbon fiber/epoxy composites with different fiber surface properties[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1070-1080. doi: 10.13801/j.cnki.fhclxb.20191021.001
Citation: HU Xiaolan, ZHOU Chuan, DAI Shaowei, et al. Micro-structures and dynamic thermal mechanical properties of graphene oxide modified carbon fiber/epoxy composites with different fiber surface properties[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1070-1080. doi: 10.13801/j.cnki.fhclxb.20191021.001

Micro-structures and dynamic thermal mechanical properties of graphene oxide modified carbon fiber/epoxy composites with different fiber surface properties

doi: 10.13801/j.cnki.fhclxb.20191021.001
  • Received Date: 2019-06-20
  • Accepted Date: 2019-08-22
  • Available Online: 2019-10-21
  • Publish Date: 2020-05-15
  • Four kinds of carbon fiber(CCF300, T700, CCF800 and CCM40J)/epoxy (CF/EP) composites modified by graphene oxide (GO) were fabricated using mould pressing. The effects of CF surface properties on GO-CF/EP composites were studied by means of micro-structures and dynamic thermomechanical properties. The results show that EP with GO significantly improves the wettability and the interfacial adhesion between the CF and the EP matrix. Micro-morphologies express that the destruction of the CF/EP composites mainly occurs at the interfaces between CF and EP matrix. However, the presence of GO makes the GO-CF/EP composites destructive form transits from interfacial debonding between CF and EP matrix to the interlaminar GO/EP region of the composites. The surface oxygen-carbon atomic ratio and grooves of the CF affect the glass transition temperature (Tg) of the CF/EP and GO-CF/EP composites significantly. The GO-CCF300/EP composite has the highest Tg because of its highest oxygen-carbon ratio. However, the GO-CCM40J/EP and GO-CCF300/EP composites exhibit better modification effect on Tg for more surface grooves.

     

  • loading
  • [1]
    CAI W, PINER R D, STADERMANN F J, et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide[J]. Science,2008,321(5897):1815-1817. doi: 10.1126/science.1162369
    [2]
    WAN Y J, TANG L C, YAN D, et al. Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process[J]. Composites Science & Technology,2013,82(15):60-68.
    [3]
    HERNÁNDEZ R J J, RAMÍREZ G R E, ESCOBEDO-MORALES A, et al. First principles calculations of the electronic and chemical properties of graphene, graphane, and graphene oxide[J]. Journal of Molecular Modeling,2011,17(5):1133-1139. doi: 10.1007/s00894-010-0818-1
    [4]
    VACCHI I A, SPINATO C, RAYA J, et al. Chemical reactivity of graphene oxide towards amines elucidated by solid-state NMR[J]. Nanoscale,2016,8(28):13714-13721. doi: 10.1039/C6NR03846H
    [5]
    SHAH R, KAUSAR A, MUHAMMAD B, et al. Progression from graphene and graphene oxide to high performance polymer-based nano composite: A review[J]. Journal of Macromolecular Science Part D: Reviews in Polymer Processing,2015,54(2):173-183.
    [6]
    AMMAR A, AL-ENIZI A M, ALMAADEED A A, et al. Influence of graphene oxide on mechanical, morphological, barrier, and electrical properties of polymer membranes[J]. Arabian Journal of Chemistry,2016,9(2):274-286. doi: 10.1016/j.arabjc.2015.07.006
    [7]
    WANG T Y, TSAI J L. Investigating thermal conductivities of functionalized graphene and graphene/epoxy nano composites[J]. Computational Materials Science,2016,122:272-280. doi: 10.1016/j.commatsci.2016.05.039
    [8]
    SHEN X, WANG Z, WU Y, et al. Effect of functionalization on thermal conductivities of graphene/epoxy composites[J]. Carbon,2016,108:412-422. doi: 10.1016/j.carbon.2016.07.042
    [9]
    WAN Y J, TANG L C, GONG L X, et al. Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties[J]. Carbon,2014,69:467-480.
    [10]
    周宏, 朴明昕, 李芹, 等. 氧化石墨烯纳米片/环氧树脂复合材料的制备与性能[J]. 复合材料学报, 2015, 32(5):1309-1315.

    ZHOU Hong, PU Mingxi, LI Qin, et al. Preparation and properties of graphene oxide nanosheeets/epoxy composites[J]. Acta Materiae Compositae Sinica,2015,32(5):1309-1315(in Chinese).
    [11]
    ZAMAN I, PHAN T T, KUAN H C, et al. Epoxy/graphene platelets nano composites with two levels of interface strength[J]. Polymer,2011,52(7):1603-1611. doi: 10.1016/j.polymer.2011.02.003
    [12]
    WANG Y, YANG C, MAI Y W, et al. Effect of non-covalent functionalisation on thermal and mechanical properties of graphene-polymer nanocomposites[J]. Carbon,2016,102:311-318. doi: 10.1016/j.carbon.2016.02.069
    [13]
    PATHAK A K, BORAH M, GUPTA A, et al. Improved mechanical properties of carbon fiber/graphene oxide-epoxy hybrid composites[J]. Composites Science & Technology,2016,135:28-38.
    [14]
    LI Y, ZHAO Y, SUN J, et al. Mechanical and electromagnetic interference shielding properties of carbon fiber/graphene nanosheets/epoxy composite[J]. Polymer Composites,2016,37(8):2494-2502. doi: 10.1002/pc.23436
    [15]
    WATSON G, STAROST K, BARI P, et al. Tensile and flexural properties of hybrid graphene oxide/epoxy carbon fibre reinforced composites[C]//Materials Science and Engineering: 3rd International Conference on Structural Nano Composites. Scotland: IOP Publishing, 2017, 195: 012009.
    [16]
    NITAI A, SUMAN C, NARESH M, et al. Effect of thermally reduced graphene oxide on mechanical properties of woven carbon fiber/epoxy composite[J]. Crystals,2018,8(3):8030111. doi: 10.3390/cryst8030111
    [17]
    CHEN J, WANG K, ZHAO Y. Enhanced interfacial interactions of carbon fiber reinforced PEEK composites by regulating PEI and graphene oxide complex sizing at the interface[J]. Composites Science and Technology,2018,154:175-186. doi: 10.1016/j.compscitech.2017.11.005
    [18]
    BHANUPRAKASH L, PARASURAM S, VARGHESE S. Experimental investigation on graphene oxides coated carbon fibre/epoxy hybrid composites: Mechanical and electrical properties[J]. Composites Science & Technology,2019,179:134-144.
    [19]
    KOSTAGIANNAKOPOULOU C, LOUTAS T H, SOTIRIADIS G, et al. On the interlaminar fracture toughness of carbon fiber composites enhanced with graphene nano-species[J]. Composites Science & Technology,2015,118:217-225.
    [20]
    ADAK N C, CHHETRI S, SABARAD S, et al. Direct observation of micro delamination in graphene oxide incorporated carbon fiber/epoxy composite via in-situ tensile test[J]. Composites Science & Technology,2019,177:57-65.
    [21]
    JR W S H, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society,1958,80(6):1339. doi: 10.1021/ja01539a017
    [22]
    ASTM International. Standard test method for glass transition temperature (DMA Tg) of polymer matrix composites by dynamic mechanical analysis (DMA): ASTM D7028—07[S]. West Conshohocken: ASTM International, 2015.
    [23]
    QIAN X, ZHI J, CHEN L, et al. Effect of low current density electrochemical oxidation on the properties of carbon fiber-reinforced epoxy resin composites[J]. Surface & Interface Analysis,2013,45(5):937-942.
    [24]
    邹豪, 李伟东, 彭公秋, 等. 高模型碳纤维的发展现状及其在航天领域的应用[J]. 合成纤维, 2017, 46(6):17-22.

    ZHOU Hao, LI Weidong, PENG Gongqiu, et al. The development situation of high modulus carbon fiber and its applications in aerospace[J]. Synthetic Fiber in China,2017,46(6):17-22(in Chinese).
    [25]
    DAI Z S, ZHANG B Y, SHI F H, et al. Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion[J]. Applied Surface Science,2011,257(15):6980-6985. doi: 10.1016/j.apsusc.2011.03.047
    [26]
    李阳, 肇研, 刘刚, 等. 国产CCF300碳纤维及其NCF织物的性能[J]. 航空学报, 2014, 35(10):2889-2900.

    LI Yang, ZHAO Yan, LIU Gang, et al. Properties of domestic CCF300 carbon fiber and its NCP fabrics[J]. Acta Aeronautica et Astronautica Sinica,2014,35(10):2889-2900(in Chinese).
    [27]
    张敏, 朱波, 王成国, 等. 用SEM研究碳纤维的表面及断口形貌[J]. 功能材料, 2010, 41(10):1731-1733.

    ZHANG Min, ZHU Bo, WANG Chengguo, et al. Surface and fracture morphologies of carbon fibers observed by SEM[J]. Journal of Functional Materials,2010,41(10):1731-1733(in Chinese).
    [28]
    张冬冬, 杨永岗, 谭松培, 等. 碳纤维表面状态对其复合材料性能的影响[J]. 化工新型材料, 2014(1):73-76.

    ZHANG Dongdong, YANG Yonggang, TAN Songpei, et al. Effect of the surface status of carbon fiber on the properties of its composite with epoxy resin[J]. New Chemical Materials,2014(1):73-76(in Chinese).
    [29]
    ZHOU Y, BASEER M A, MAHFUZ H, et al. Statistical analysis on the fatigue strength distribution of T700 carbon fiber[J]. Composites Science & Technology,2006,66(13):2100-2106.
    [30]
    LI B, ZHANG C R, CAO F, et al. Effects of fiber surface treatments on mechanical properties of T700 carbon fiber reinforced BN-Si3N4 composites[J]. Materials Science & Engineering A,2007,471(1):169-173.
    [31]
    李伟东, 张金栋, 刘刚, 等. 国产T800碳纤维/双马来酰亚胺复合材料的界面及力学性能[J]. 复合材料学报, 2016, 33(7):1484-1491.

    LI Weidong, ZHANG Jindong, LIU Gang, et al. Interfacial and mechanical properties of domestic T800 carbon fiber/bismaleimide composites[J]. Acta Materiae Compositae Sinica,2016,33(7):1484-1491(in Chinese).
    [32]
    钟翔屿, 张代军, 包建文, 等. 热塑性树脂含量对CCF800H碳纤维环氧复合材料Ⅰ型层间断裂韧度的影响[J]. 材料工程, 2017, 45(8):55-61.

    ZHONG Xiangyu, ZHANG Daijun, BAO Jianwen, et al. Influence of content of toughening thermoplastic on mode-Ⅰ interlaminar fracture toughness of epoxy composite reinforced by CCF800H carbon fiber[J]. Journal of Materials Engineering,2017,45(8):55-61(in Chinese).
    [33]
    陈伟明, 王成忠, 周同悦, 等. 高性能T800碳纤维复合材料树脂基体[J]. 复合材料学报, 2006, 23(4):29-35. doi: 10.3321/j.issn:1000-3851.2006.04.006

    CHEN Weiming, WANG Chengzhong, ZHOU Tongyue, et al. High-performance resin matrix for T800 carbon fiber composites[J]. Acta Materiae Compositae Sinica,2006,23(4):29-35(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.04.006
    [34]
    罗云烽, 李阳, 肇研, 等. 国产T800级炭纤维表面特性及其复合材料微观界面性能[J]. 材料工程, 2014(9):83-88. doi: 10.11868/j.issn.1001-4381.2014.09.014

    LUO Yunfeng, LI Yang, ZHAO Yan, et al. Surface characteristics of domestic T800-grade carbon fibers and microscopic interphase properties of composites[J]. Journal of Materials Engineering,2014(9):83-88(in Chinese). doi: 10.11868/j.issn.1001-4381.2014.09.014
    [35]
    WEI S, GU A, LIANG G, et al. Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites[J]. Applied Surface Science,2011,257(9):4069-4074. doi: 10.1016/j.apsusc.2010.11.177
    [36]
    刘福杰, 王浩静, 范立东, 等. MJ系列碳纤维微观结构的剖析[J]. 化工新型材料, 2009, 37(1):41-43. doi: 10.3969/j.issn.1006-3536.2009.01.017

    LIU Fujie, WANG Haojing, FAN Lidong, et al. Analysis on the microstructure of MJ series carbon fibers[J]. New Chemical Materials,2009,37(1):41-43(in Chinese). doi: 10.3969/j.issn.1006-3536.2009.01.017
    [37]
    徐永新, 顾轶卓, 马全胜, 等. 几种国产高模碳纤维特性实验分析[J]. 复合材料学报, 2016, 33(9):1905-1914.

    XU Yongxin, GU Yizhuo, MA Quansheng, et al. Experimental analysis of properties of several domestic high-modulus carbon fibers[J]. Acta Materiae Compositae Sinica,2016,33(9):1905-1914(in Chinese).
    [38]
    ZHONG Y, BIAN W. Analysis of the tensile moduli affected by microstructures among seven types of carbon fibers[J]. Composites Part B: Engineering,2017,110:178-184. doi: 10.1016/j.compositesb.2016.11.032
    [39]
    LI D, LU C, WANG L, et al. A reconsideration of the relationship between structural features and mechanical properties of carbon fibers[J]. Materials Science & Engineering A,2017,685:65-70.
    [40]
    李林. T800级碳纤维及石墨纤维微观结构的表征与性能分析[D]. 绵阳: 西南科技大学, 2017.

    LI Lin. Microstructure characterization and property analysis of T800 carbon fibers and graphite fibers[D]. Mianyang: Southwest University of Science and Technology, 2017(in Chinese).
    [41]
    代少伟, 李伟东, 邱虹, 等. 氧化石墨烯改性高温环氧树脂基碳纤维复合材料的热性能与力学性能[J]. 厦门大学学报(自然科学版), 2019, 58(3):324-331.

    DAI Shaowei, LI Weidong, QIU Hong, et al. Thermal and mechanical properties of graphene oxide modified high temperature epoxy resin based carbon fiber composites[J]. Journal of Xiamen University(Natural Science),2019,58(3):324-331(in Chinese).
    [42]
    SHEN X J, PEI X Q, FU S Y, et al. Significantly modified tribological performance of epoxy nanocomposites at very low graphene oxide content[J]. Polymer,2013,54(3):1234-1242. doi: 10.1016/j.polymer.2012.12.064
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (1173) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return