Volume 37 Issue 7
Aug.  2020
Turn off MathJax
Article Contents
HAN Yaozhang, LI Jin, ZHANG Dianping, et al. Effects of multiple factors on thermal aging properties of glass fiber/epoxy composites using in-situ monitoring[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1531-1538. doi: 10.13801/j.cnki.fhclxb.20191017.001
Citation: HAN Yaozhang, LI Jin, ZHANG Dianping, et al. Effects of multiple factors on thermal aging properties of glass fiber/epoxy composites using in-situ monitoring[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1531-1538. doi: 10.13801/j.cnki.fhclxb.20191017.001

Effects of multiple factors on thermal aging properties of glass fiber/epoxy composites using in-situ monitoring

doi: 10.13801/j.cnki.fhclxb.20191017.001
  • Received Date: 2019-08-11
  • Accepted Date: 2019-10-13
  • Available Online: 2019-10-17
  • Publish Date: 2020-07-15
  • In order to investigate the aging problem of glass fiber reinforced polymer(GFRP) composites as the lining of thermal power chimney, the glass fiber/epoxy(GF/EP) composite was taken as the research object. The effects of temperature, coupling agent content and heat flux aging time on the mass loss rate, bending strength and shear properties of GF/EP composite were studied by orthogonal test. The porosity of the GF/EP composite was measured and calculated by means of metallographic microscopic image processing and in-situ real-time detection system. The results show that different factors have different effects on the properties of GF/EP composites. The increase of coupling agent content can improve the mass loss rate of GF/EP composite. Temperature has a great influence on the bending strength. The post-curing behavior of the GF/EP composite itself will affect the change trend of bending performance, which still decreases by 11.8% as the temperature increasing. The interlaminar shear strength of the GF/EP composite is closely related to the thermal aging time, and the mean interlaminar shear strength is 10.2% higher at 16 h than that at 8 h.

     

  • loading
  • [1]
    彭楚渊. 火电厂烟囱出口烟气温度的估算[J]. 电力技术, 1984(8):9-12.

    PENG Chuyuan. Estimation of flue gas temperature at chimney outlet of thermal power plant[J]. Power Technology,1984(8):9-12(in Chinese).
    [2]
    余宗学, 马瑜, 何毅, 等. TiO2-GO的制备及TiO2-GO/环氧树脂涂层的抗腐蚀性能[J]. 复合材料学报, 2015, 32(4):1017-1024.

    YU Zongxue, MA Yu, HE Yi, et al. Preparation of TiO2-GO and corrosion resistance of TiO2-GO/epoxy resin coating[J]. Acta Materiae Compositae Sinica,2015,32(4):1017-1024(in Chinese).
    [3]
    杨斌, 章继峰, 梁文彦, 等. 玻璃纤维表面纳米SiO2改性对GF/PCBT复合材料力学性能的影响[J]. 复合材料学报, 2015, 32(3):691-698.

    YANG Bin, ZHANG Jifeng, LIANG Wenyan, et al. Effects of nano-SiO2 modification on the mechanical properties of GF/PCBT composites[J]. Acta Materiae Compositae Sinica,2015,32(3):691-698(in Chinese).
    [4]
    程基伟, 王天民. 取向玻璃纤维增强塑料的应力腐蚀开裂研究[J]. 复合材料学报, 2004, 21(6):39-46. doi: 10.3321/j.issn:1000-3851.2004.06.007

    CHENG J W, WANG T M. Stress corrosion cracking of oriented glass fiber reinforced plastics[J]. Acta Materiae Compositae Sinica,2004,21(6):39-46(in Chinese). doi: 10.3321/j.issn:1000-3851.2004.06.007
    [5]
    程圣, 张沛红, 邵琦. 纳米SiO2/环氧桐马酸酐黏合剂的力学特性和老化特性[J]. 复合材料学报, 2017, 34(3):582-587.

    CHENG Sheng, ZHANG Peihong, SHAO Qi. Mechanical and aging properties of nano SiO2/epoxy tung-maleic anhydride adhesive[J]. Acta Materiae Compositae Sinica,2017,34(3):582-587(in Chinese).
    [6]
    ZHANG R L, GAO B, ZHANG J, et al. Propagation of PAMAM dendrimers on the carbon fiber surface by in situ polymerization: A novel methodology for fiber/matrix composites[J]. Applied Surface Science,2015,359:812-818. doi: 10.1016/j.apsusc.2015.10.204
    [7]
    MA L, MENG L, WU G, et al. Improving the interfacial properties of carbon fiber-reinforced epoxy composites by grafting of branched polyethyleneimine on carbon fiber surface in supercritical methanol[J]. Composites Science and Technology,2015,114:64-71. doi: 10.1016/j.compscitech.2015.04.011
    [8]
    BENYAHIA H, TARFAOUI M, EL MOUMEN A, et al. Mechanical properties of offshoring polymer composite pipes at various temperatures[J]. Composites Part B: Engineering,2018,152:231-240.
    [9]
    马少华, 许赞, 许良, 等. 湿热-高温循环老化对碳纤维增强双马树脂基复合材料界面性能的影响[J]. 高分子材料科学与工程, 2008, 34(3):54-59, 66.

    MA Shaohua, XU Zan, XU Liang, et al. Effect of wet-heat cycling aging on interfacial properties of carbon fiber reinforced shuangma resin matrix composites[J]. Polymer Materials Science and Engineering,2008,34(3):54-59, 66(in Chinese).
    [10]
    KUMAR D S, SHUKLA M J, MAHATO K K, et al. Effect of post-curing on thermal and mechanical behavior of GFRP composites[C]//IOP Conference Series: Materials Science and Engineering. Rourkela: IOP Publishing Ltd., 2015.
    [11]
    YANG W, ZHANG Y R, YUEN A C Y , et al. Synthesis of phosphorus-containing silane coupling agent for surface modification of glass fibers: Effective reinforcement and flame retardancy in poly(1, 4-butylene terephthalate)[J]. Chemical Engineering Journal,2017,321:257-267.
    [12]
    LU Y, KHANAL S, AHMED S, et al. Mechanical and thermal properties of poly(vinyl chloride) composites filled with carbon microspheres chemically modified by a biopolymer coupling agent[J]. Composites Science and Technology,2019,172:29-35.
    [13]
    PEDRAZZOLI D, PEGORETTI A. Silica nanoparticles as coupling agents for polypropylene/glass composites[J]. Composites Science and Technology,2013,76:77-83.
    [14]
    PEDRAZZOLI D, PEGORETTI A. Expanded graphite nanoplatelets as coupling agents in glass fiber reinforced polypropylene composites[J]. Composites Part A: Applied Science and Manufacturing,2014,66:25-34.
    [15]
    YU S, OH K H, HWANG J Y, et al. The effect of amino-silane coupling agents having different molecular structures on the mechanical properties of basalt fiber-reinforced polyamide 6, 6 composites[J]. Composites Part B: Engineering,2019,163:511-521.
    [16]
    罗霞, 俞科静, 王梦蕾, 等. 硅烷偶联剂对玻璃纤维/聚氨酯复合材料性能的影响研究[J]. 化工新型材料, 2017, 45(8):81-83.

    LUO Xia, YU Kejing, WANG Menglei, et al. Effect of silane coupling agent on properties of glass fiber/polyurethane composites[J]. New Chemical Materials,2017,45(8):81-83(in Chinese).
    [17]
    ASTM International. Standard test method for flexural properties of polymer matrix composite materials: ASTM D7264M—15[S]. West Conshohocken: ASTM International, 2015.
    [18]
    ASTM International. Standard test method for short-beam strength of polymer matrix composite materials and their laminates: ASTM D2344M—16[S]. West Conshohocken: ASTM International, 2016.
    [19]
    林莉, 罗明, 郭广平, 等. 碳纤维复合材料孔隙率超声声阻抗法监测[J]. 复合材料学报, 2009, 26(3):105-110. doi: 10.3321/j.issn:1000-3851.2009.03.019

    LIN Li, LUO Ming, GUO Guangping, et al. Ultrasonic acoustic impedance monitoring of porosity of carbon fiber composites[J]. Acta Materiae Compositae Sinica,2009,26(3):105-110(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.03.019
    [20]
    熊需海, 张朝鹏, 任荣, 等. 高温真空老化对X2101双马树脂基复合材料结构及力学性能的影响[J]. 装备环境工程, 2018, 15(2):14-18.

    XIONG Xuhai, ZHANG Chaopeng, REN Rong, et al. Effect of vacuum aging on properties and structure of X2101 BMI matrix composites[J]. Equipment Environmental Engineering,2018,15(2):14-18(in Chinese).
    [21]
    王晓东, 云斯宁, 张太宏, 等. 硅烷偶联剂表面改性玄武岩纤维增强复合材料研究进展[J]. 材料导报, 2017, 31(5):77-83.

    WANG Xiaodong, YUN Sining, ZHANG Taihong, et al. Advances in basalt fiber-reinforced composites modified by silane coupling agents[J]. Materials Review,2017,31(5):77-83(in Chinese).
    [22]
    张志坚, 花蕾, 李焕兴, 等. 硅烷偶联剂在玻纤增强复合材料领域中的应用[J]. 玻璃纤维, 2013(3):11-22. doi: 10.3969/j.issn.1005-6262.2013.03.003

    ZHANG Zhijian, HUA Lei, LI Huanxing, et al. Use of silane coupling agents in glass fiber reinforced composites[J]. Fiber Glass,2013(3):11-22(in Chinese). doi: 10.3969/j.issn.1005-6262.2013.03.003
    [23]
    SERETIS G V, NITODAS S F, MIMIGIANNI P D, et al. On the post-curing of graphene nanoplatelets reinforced hand lay-up glass fabric/epoxy nanocomposites[J]. Composites Part B: Engineering,2018,146:133-138.
    [24]
    ARSLAN C, DOGAN M. The effects of silane coupling agents on the mechanical properties of basalt fiber reinforced poly(butylene terephthalate) composites[J]. Composites Part B: Engineering,2018,146:145-154.
    [25]
    RATHORE D K, SINGH B P, MOHANTY S C, et al. Temperature dependent reinforcement efficiency of carbon nanotube in polymer composite[J]. Composites Communications,2016,1:29-32.
    [26]
    KWON D J, SHIN P S, KIM J H, et al. Interfacial properties and thermal aging of glass fiber/epoxy composites reinforced with SiC and SiO2 nanoparticles[J]. Composites Part B: Engineering,2017,130:46-53.
    [27]
    GALLEGO J M, CZADERSKI C, BREVEGLIERI M, et al. Fatigue behaviour at elevated temperature of RC slabs strengthened with EB CFRP strips[J]. Composites Part B: Engineering,2018,141:37-49.
    [28]
    张静静, 段玉岗, 赵新明. 辐照剂量及后固化温度对低能电子束分层固化复合材料层间性能的影响[J]. 机械工程材料, 2017, 41(5):43-48. doi: 10.11973/jxgccl201705009

    ZHANG Jingjing, DUAN Yugang, ZHAO Xinming. Effect of irradiation dose and post-curing temperature on interlaminar properties of composite stepwise cured by low energy E-beam[J]. Materials for Mechanical Engineering,2017,41(5):43-48(in Chinese). doi: 10.11973/jxgccl201705009
    [29]
    XIE Y J, HILL C A S, XIAO Z F, et al. Silane coupling agents used for natural fiber/polymer composites: A review[J]. Composites Part A: Applied Science and Manufacturing,2010,41(7):806-819.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (835) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return