Volume 37 Issue 7
Aug.  2020
Turn off MathJax
Article Contents
HUANG Xin, JIANG Jingshan, SUN Tianyang, et al. Orthogonal experiment on mechanical properties of basalt fiber-carbon fiber/slag concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1743-1753. doi: 10.13801/j.cnki.fhclxb.20190930.001
Citation: HUANG Xin, JIANG Jingshan, SUN Tianyang, et al. Orthogonal experiment on mechanical properties of basalt fiber-carbon fiber/slag concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1743-1753. doi: 10.13801/j.cnki.fhclxb.20190930.001

Orthogonal experiment on mechanical properties of basalt fiber-carbon fiber/slag concrete

doi: 10.13801/j.cnki.fhclxb.20190930.001
  • Received Date: 2019-08-11
  • Accepted Date: 2019-09-22
  • Available Online: 2019-09-30
  • Publish Date: 2020-07-15
  • The slump, cube compressive strength and splitting tensile strength tests of 16 groups of basalt fiber-carbon fiber(BF-CF)/slag concrete and 1 group of C40 reference concrete were conducted by orthogonal experimental method. The effects of BF, CF and slag on the mechanical properties of BF-CF/slag concrete were investigated. The test results show that the cube compressive strength and splitting tensile strength of BF-CF/slag concrete are higher than the cube compressive strength and splitting tensile strength of C40 reference concrete, i.e., the maximum increase of cube compressive strength is 21.0%, and the maximum increase of splitting tensile strength is 35.3%. The addition of BF and CF can reduce the slump of concrete, and BF can reduce the slump more significantly. The maximum drop of BF to the slump is 67.1%. The mass fraction of slag replacing for sand is a significant factor affecting the cube compressive strength of BF-CF/slag concrete. With the increase of mass fraction of slag replacing for sand, the cube compressive strength first increases and then decreases, and the maximum increase of slag to the cube compressive strength is 7.6%. BF is a significant factor affecting the tensile strength of BF-CF/slag concrete, and the tensile strength increases with the increase of the volume fraction of BF. The maximum increase of BF to the tensile strength is 12.0%, and the increase of CF to the tensile strength is not obvious. The results of the orthogonal experiment were regressed, and the prediction models of the cube compressive strength and splitting tensile strength of the BF-CF/slag concrete were obtained, and the accuracy of model is high.

     

  • loading
  • [1]
    刘刚. 高强混凝土的断裂脆性及其增韧减脆措施试验研究 [D]. 武汉: 武汉大学, 2004.

    LIU G. Fracture brittleness of high strength concrete and the experimental research of toughening and reducing brittleness [D]. Wuhan: Wuhan University, 2004(in Chinese).
    [2]
    黄凯健, 邓敏. 玄武岩纤维耐碱性及对混凝土力学性能的影响[J]. 复合材料学报, 2010, 27(1):150-154.

    HUANG K J, DENG M. Basalt fiber alkali resistance and its influence on the mechanical properties of concrete[J]. Acta Materiae Compositae Sinica,2010,27(1):150-154(in Chinese).
    [3]
    卿龙邦, 聂雅彤, 慕儒. 钢纤维对水泥基复合材料抗起裂特性的影响[J]. 复合材料学报, 2017, 34(8):1862-1869.

    QING L B, NIE Y T, MU R. Influence of steel fibres on the resistance to crack initiation of cementitious composites[J]. Acta Materiae Compositae Sinica,2017,34(8):1862-1869(in Chinese).
    [4]
    PAPACHRISTOFOROU M, PAPAYIANNI I. Radiation shielding and mechanical properties of steel fiber reinforced concrete (SFRC) produced with EAF slag aggregates[J]. Radiation Physics and Chemistry,2018,149:26-32.
    [5]
    WANG D, JU Y Z, SHEN H, et al. Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber[J]. Construction and Building Materials,2019,197:464-473. doi: 10.1016/j.conbuildmat.2018.11.181
    [6]
    ALTUN F, TANRIÖVEN F, DIRIKGIL T. Experimental investigation of mechanical properties of hybrid fiber reinforced concrete samples and prediction of energy absorption capacity of beams by fuzzy-genetic model[J]. Construction and Building Materials,2013,44:565-574. doi: 10.1016/j.conbuildmat.2013.03.043
    [7]
    周乐, 王晓初, 刘洪涛. 碳纤维混凝土力学性能与破坏形态试验研究[J]. 工程力学, 2013, 30(s1):226-231.

    ZHOU L, WANG X C, LIU H T. Experimental study of mechanical behavior and failure mode of carbon fiber reinforced concrete[J]. Engineering Mechanics,2013,30(s1):226-231(in Chinese).
    [8]
    权长青, 焦楚杰, 杨云英, 等. 混杂纤维混凝土力学性能的正交试验研究[J]. 建筑材料学报, 2019, 22(3):363-370. doi: 10.3969/j.issn.1007-9629.2019.03.006

    QUAN C Q, JIAO C J, YANG Y Y, et al. Orthogonal experimental study on mechanical properties of hybrid fiber reinforced concrete[J]. Journal of Building Materials,2019,22(3):363-370(in Chinese). doi: 10.3969/j.issn.1007-9629.2019.03.006
    [9]
    高丹盈, 李晗, 杨帆. 聚丙烯-钢纤维增强高强混凝土高温性能[J]. 复合材料学报, 2013, 30(1):187-193.

    GAO D Y, LI H, YANG F. Performance of polypropylene-steel hybrid fiber reinforced concrete after being exposed to high temperature[J]. Acta Materiae Compositae Sinica,2013,30(1):187-193(in Chinese).
    [10]
    王金歌. 混杂纤维混凝土力学性能的试验研究[D]. 开封: 河南大学, 2016.

    WANG J G. Research on mechanical properties of hybrid fiber reinforced concrete[D]. Kaifeng: Henan University, 2016(in Chinese).
    [11]
    VIJAYARAGHAVANA J, JUDE A B, THIVYA J. Effect of copper slag, iron slag and recycled concrete aggregate on the mechanical properties of concrete[J]. Resources Policy,2017,53:219-225. doi: 10.1016/j.resourpol.2017.06.012
    [12]
    朱蓓蓉, 於林峰, 张树青, 等. 矿渣代砂水泥砂浆及混凝土物理力学性能研究[J]. 建筑材料学报, 2008, 11(4):386-391. doi: 10.3969/j.issn.1007-9629.2008.04.002

    ZHU B R, YU L F, ZHANG S Q, et al. Study on physical and mechanical performance of mortar and concrete containing blast furnace slag aggregates[J]. Journal of building materials,2008,11(4):386-391(in Chinese). doi: 10.3969/j.issn.1007-9629.2008.04.002
    [13]
    RAJASEKAR A, ARUNACHALAM K, KOTTAISAMY M. Assessment of strength and durability characteristics of copper slag incorporated ultra high strength concrete[J]. Journal of Cleaner Production,2019,208:402-414. doi: 10.1016/j.jclepro.2018.10.118
    [14]
    高丹盈, 景嘉骅, 周潇. 混杂纤维增强再生砖骨料混凝土增强机制与抗压性能计算方法[J]. 复合材料学报, 2018, 35(12):3441-3449.

    GAO D Y, JING J H, ZHOU X. Reinforcing mechanism and calculation method of compressive behavior of hybrid fiber reinforced recycled brick aggregates concrete[J]. Acta Materiae Compositae Sinica,2018,35(12):3441-3449(in Chinese).
    [15]
    杨娟, 朋改非. 纤维对超高性能混凝土残余强度及高温爆裂性能的影响[J]. 复合材料学报, 2016, 33(12):2931-2940.

    YANG J, PENG G F. Effect of fiber on residual strength and explosive spalling behavior of ultra-high-performance concrete exposed to high temperature[J]. Acta Materiae Compositae Sinica,2016,33(12):2931-2940(in Chinese).
    [16]
    李建. 短切玄武岩纤维对矿渣粉煤灰混凝土力学性能和微观结构的影响[J]. 硅酸盐通报, 2017, 36(2):727-732, 737.

    LI J. Effects of truncated basalt fibers on the mechanical properties and microstructure of slag fly ash concrete[J]. Bulletin of the Chinese Ceramic Society,2017,36(2):727-732, 737(in Chinese).
    [17]
    袁萍, 龚礼明. 纤维材料对矿渣活性粉末混凝土力学性能影响分析[J]. 混凝土, 2009(12):58-60. doi: 10.3969/j.issn.1002-3550.2009.12.018

    YUAN P, GONG L M. Analysis of the influence of fiber materials on the mechanical properties of slag active powder concrete[J]. Concrete,2009(12):58-60(in Chinese). doi: 10.3969/j.issn.1002-3550.2009.12.018
    [18]
    中国国家标准化管理委员会. 建设用砂: GB/T 14684—2011[S]. 北京: 中国标准出版社, 2012.

    Standardization Administration of the People’s Republic of China. Construction sand: GB/T 14684—2011[S]. Beijing: China Standards Press, 2012(in Chinese).
    [19]
    方开泰, 马长兴. 正交与均匀试验设计[M]. 北京: 科学出版社, 2001.

    FANG K T, MA C X. Orthogonal and uniform experimental design [M]. Beijing: Science Press, 2001(in Chinese).
    [20]
    王闯, 王爱玲, 张修身. 短碳纤维的分散性对CFRC力学性能的影响[J]. 材料导报, 2007, 21(5):125-128. doi: 10.3321/j.issn:1005-023X.2007.05.033

    WANG C, WANG A L, ZHANG X S. Effect of dispersion of short carbon fibers on the mechanical properties of CFRC composites[J]. Materials Review,2007,21(5):125-128(in Chinese). doi: 10.3321/j.issn:1005-023X.2007.05.033
    [21]
    中华人民共和国住房和城乡建设部. 普通混凝土拌合物性能试验方法标准: GB/T 50080—2016[S]. 北京: 中国建筑工业出版社, 2017.

    Ministry of Housing and Urban-Rura Development of the People’s Republic of China. Standard for test method of performance on ordinary fresh concrete: GB/T 50080—2016[S]. Beijing: China Architecture & Building Press, 2017(in Chinese).
    [22]
    中国国家标准化管理委员会. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国标准出版社, 2003.

    Standardization Administration of the People’s Republic of China. standard for test method of mechanical properties on ordinary concrete: GB/T 50081—2002[S]. Beijing: China Standards Press, 2003(in Chinese).
    [23]
    徐至钧. 纤维混凝土技术及应用[M]. 北京: 中国建筑工业出版社, 2003.

    XU Z J. Technology and application of fiber reinforced concrete[M]. Beijing: China Architecture & Building Press, 2003(in Chinese).
    [24]
    陈颖. 单次多水平正交试验中效应的显著性检验[J]. 应用概率统计, 2011, 27(5):497-510. doi: 10.3969/j.issn.1001-4268.2011.05.005

    CHEN Y. A significance test in multi-level orthogonal designs with only one replicate[J]. Chinese Journal of Applied Probability,2011,27(5):497-510(in Chinese). doi: 10.3969/j.issn.1001-4268.2011.05.005
    [25]
    董振英, 李庆斌. 纤维增强脆性复合材料细观力学若干进展[J]. 力学进展, 2001, 31(4):555-582. doi: 10.3321/j.issn:1000-0992.2001.04.010

    DONG Z Y, LI Q B. Fiber reinforced brittle composite several advances on mesoscopic mechanics[J]. Advances in Mechanics,2001,31(4):555-582(in Chinese). doi: 10.3321/j.issn:1000-0992.2001.04.010
    [26]
    何世钦, 王海超. 高性能混凝土配合比设计的正交试验研究[J]. 工业建筑, 2003, 33(8):8-10, 41. doi: 10.3321/j.issn:1000-8993.2003.08.003

    HE S Q, WANG H C. Orthogonal experimental studies on mix design of high performance concrete[J]. Industrial Construction,2003,33(8):8-10, 41(in Chinese). doi: 10.3321/j.issn:1000-8993.2003.08.003
    [27]
    张振雷. 混杂纤维混凝土力学性能研究[J]. 玻璃钢/复合材料, 2019(6):43-48. doi: 10.3969/j.issn.1003-0999.2019.06.007

    ZHANG Z L. Research on mechanical properties of hybrid fiber concrete[J]. Glass Reinforced Plastics/Composites,2019(6):43-48(in Chinese). doi: 10.3969/j.issn.1003-0999.2019.06.007
    [28]
    张培辉, 方圣恩, 洪华山. 不同纤维增强混凝土力学性能和破坏形态对比试验[J]. 玻璃钢/复合材料, 2019(6):73-79. doi: 10.3969/j.issn.1003-0999.2019.06.012

    ZHANG P H, FANG S E, HONG H S. Comparative test of mechanical properties and failure modes of concrete reinforced with different fibers[J]. Glass Reinforced Plastics/Composites,2019(6):73-79(in Chinese). doi: 10.3969/j.issn.1003-0999.2019.06.012
    [29]
    王钧, 任靖豪, 郭大鹏. 短切玄武岩纤维混凝土基本力学性能的尺寸效应[J]. 建筑科学与工程学报, 2015, 32(5):96-103. doi: 10.3969/j.issn.1673-2049.2015.05.013

    WANG J, REN J H, GUO D P. Size effect of basic mechanical properties of short-cut basalt fiber concrete[J]. Journal of Architecture and Civil Engineering,2015,32(5):96-103(in Chinese). doi: 10.3969/j.issn.1673-2049.2015.05.013
    [30]
    SAMANI M A, LAK S J. Experimental investigation on the mechanical properties of recycled aggregate concrete reinforced by waste carbon fibers[J]. International Journal of Environmental Science and Technology,2019,16:4519-4530.
    [31]
    MAVROULIDOU M. Mechanical properties and durability of concrete with water cooled copper slag aggregate[J]. Waste and Biomass Valorization,2017,8:1841-1854.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(10)

    Article Metrics

    Article views (1081) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return