ZHANG Mingyan, YANG Zhenhua, WU Zijian, et al. Preparation and properties of a novel sandwich structure polydimethylsiloxane/polyvinylidene fluoride-Ag nanowires/polydimethylsiloxane flexible strain sensor[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1024-1032. DOI: 10.13801/j.cnki.fhclxb.20190923.001
Citation: ZHANG Mingyan, YANG Zhenhua, WU Zijian, et al. Preparation and properties of a novel sandwich structure polydimethylsiloxane/polyvinylidene fluoride-Ag nanowires/polydimethylsiloxane flexible strain sensor[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1024-1032. DOI: 10.13801/j.cnki.fhclxb.20190923.001

Preparation and properties of a novel sandwich structure polydimethylsiloxane/polyvinylidene fluoride-Ag nanowires/polydimethylsiloxane flexible strain sensor

More Information
  • Received Date: June 05, 2019
  • Accepted Date: September 19, 2019
  • Available Online: September 22, 2019
  • In order to improve the performance of the flexible strain sensor, the polyvinylidene fluoride (PVDF) electrospinning film was prepared by electrospinning, and the self-made Ag nanowires (AgNWs) were suction filtered on the surface of the PVDF electrospinning film as a conductive layer. A multi-layer sandwich polydimethylsiloxane (PDMS)/PVDF-AgNWs/PDMS flexible strain sensor with different content of AgNWs in a series of conductive layers was prepared by using PDMS to cure the conductive layer on both sides. The performance of the PDMS/PVDF-AgNWs/PDMS sensor was characterized and analyzed. The results show that the introduction of the electrospun membrane significantly improves the performance of the PDMS/PVDF-AgNWs/PDMS flexible strain sensor, reduces the hysteresis, increases the sensitivity and repeatability and greatly improves the service life of the PDMS/PVDF-AgNWs/PDMS sensor. When the content of AgNWs in the conductive layer is 0.030 g, and the strain reaches 10%, the guage factor which can directly reflect the sensitivity of the flexible strain sensor can reach 143.85. After 30 days of repeatable test on the self-made sensor, the initial resistance value of the PDMS/PVDF-AgNWs/PDMS flexible strain sensor is only increased by about 2 Ω compared with the initial test under the condition of setting the displacement of 5 mm and stretching 20 times per day. The resistance value of PDMS/PVDF-AgNWs/PDMS​​​​​​​ flexible strain sensor compared with the maximum displacement value is negligible.
  • [1]
    曾天禹, 黄显. 可穿戴传感器进展、挑战和发展趋势[J]. 科技导报, 2017, 35(2):19-32.

    ZENG Tianyu, HUANG Xian. Progress, challenges and development trends of wearable sensors[J]. Science and Technology Review,2017,35(2):19-32(in Chinese).
    [2]
    程琼, 刘玮, 林兰天, 等. 碳纳米管柔性应变传感器在智能纺织品中的应用[J]. 河北科技大学学报, 2017, 38(5):474-479. DOI: 10.7535/hbkd.2017yx05010

    CHENG Qiong, LIU Wei, LIN Lantian, et al. Application of carbon nanotube flexible strain sensor in smart textiles[J]. Journal of Hebei University of Science and Technology,2017,38(5):474-479(in Chinese). DOI: 10.7535/hbkd.2017yx05010
    [3]
    PANG C, KOO J H, NGUYEN A, et al. Highly skin-conformal microhairy sensor for pulse signal amplification[J]. Advanced Materials,2015,27(4):634-640.
    [4]
    段建瑞, 李斌, 李帅臻, 等. 常用新型柔性传感器的研究进展[J]. 传感器与微系统, 2015, 34(11):1-4.

    DUAN Jianrui, LI Bin, LI Shuaizhen, et al. Research progress of commonly used new flexible sensors[J]. Transducer and Microsystems,2015,34(11):1-4(in Chinese).
    [5]
    高会, 黄龙男, 刘彦菊, 等. 形状记忆聚合物在柔性光/电子器件领域的发展与挑战[J]. 复合材料学报, 2018, 35(12):3235-3246.

    GAO Hui, HUANG Longnan, LIU Yanju, et al. Development and challenges of shape memory polymers in the field of flexible optical/electronic devices[J]. Acta Materiae Compositae Sinica,2018,35(12):3235-3246(in Chinese).
    [6]
    史济东. 基于碳纳米管石墨烯复合薄膜的柔性应变传感器[J]. 应用技术学报, 2018, 18(1):90-91. DOI: 10.3969/j.issn.2096-3424.2018.01.016

    SHI Jidong. Flexible strain sensor based on carbon nano-tube graphene composite film[J]. Journal of Applied Sciences,2018,18(1):90-91(in Chinese). DOI: 10.3969/j.issn.2096-3424.2018.01.016
    [7]
    张晓飞, 李喜德. 基于石墨烯网状结构的柔性应变传感器及其性能研究[C]//2013中国力学大会. 西安: 中国力学学会, 2013: 265.

    ZHANG Xiaofei, LI Xide. Flexible strain sensor based on graphene network structure and its performance[C]//2013 China Mechanics Conference. Xi’an: Chinese Society of Theoretical and Applied Mechanics, 2013: 265 (in Chinese).
    [8]
    蔡乐, 周维亚, 解思深, 等. 碳纳米管柔性应变传感器的研究[J]. 现代物理知识, 2014(2):24-28.

    CAI Le, ZHOU Weiya, XIE Sishen, et al. Research on flexible strain sensor of carbon nanotubes[J]. Research of Modern Physics,2014(2):24-28(in Chinese).
    [9]
    张翠鹏. 橡胶基阻断型柔性应变传感器的制备及性能研究[D]. 北京: 中国地质大学, 2018.

    ZHANG Cuipeng. Preparation and performance of rubber-based blocking flexible strain sensor[D]. Beijing: China University of Geosciences, 2018 (in Chinese).
    [10]
    PARK J J, HYUN W J, MUN S C, et al. Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring[J]. ACS Applied Materials & Interfaces,2015,7(11):6317-6328.
    [11]
    张阳阳, 黄英, 郝超, 等. 基于织物拉伸传感器的手势映射系统[J]. 仪器仪表学报, 2017, 38(10):2422-2429.

    ZHANG Yangyang, HUANG Ying, HAO Chao, et al. Gestures mapping system based on fabric tensile sensor[J]. Journal of Scientific Instrument,2017,38(10):2422-2429(in Chinese).
    [12]
    王双, 刘玮, 刘晓霞. 柔性应变织物传感器研究进展[J]. 传感器与微系统, 2017, 36(12):1-3, 9.

    WANG Shuang, LIU Wei, LIU Xiaoxia. Research progress of flexible strain fabric sensors[J]. Journal of Sensors and Microsystems,2017,36(12):1-3, 9(in Chinese).
    [13]
    韩景泉, 陆凯悦, 岳一莹, 等. 纤维素纳米纤丝-碳纳米管/天然橡胶柔性导电弹性体的合成与性能[J]. 新型炭材料, 2018, 33(4):341-350.

    HAN Jingquan, LU Kaiyue, YUE Yiying, et al. Synthesis and electrochemical performance of flexible cellulose nanofiber-carbon nanotube/natural rubber composite elastomers as supercapacitor electrodes[J]. New Carbon Materials,2018,33(4):341-350(in Chinese).
    [14]
    韩景泉, 丁琴琴, 鲍雅倩, 等. 纤维素纳米纤丝增强导电水凝胶的合成与表征[J]. 林业工程学报, 2017, 2(1):84-89.

    HAN Jingquan, DING Qinqin, BAO Yaqian, et al. Synthesis and characterization of nanocellulose reinforced conductive hydrogel[J]. Journal of Forestry Engineering,2017,2(1):84-89(in Chinese).
    [15]
    LEE C J, PARK K H, HAN C J, et al. Crack-induced Ag nanowire networks for transparent, stretchable, and highly sensitive strain sensors[J]. Scientific Reports,2017,7(1):7959. DOI: 10.1038/s41598-017-08484-y
    [16]
    RYU S, LEE P, CHOU J B, et al. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion[J]. ACS Nano,2015,9(6):5929-5936. DOI: 10.1021/acsnano.5b00599
    [17]
    赵木森, 于海波, 孙丽娜, 等. 基于石墨烯/PEDOT:PSS复合材料制备的可穿戴柔性传感器[J]. 中国科学: 技术科学, 2019, 49(7):851-860.

    ZHAO Musen, YU Haibo, SUN Lina, et al. Wearable flexible sensor based on graphene/PEDOT:PSS composites[J]. Scientia Sinica (Technologica),2019,49(7):851-860(in Chinese).
    [18]
    韩景泉, 王绍霖, 岳一莹, 等. 纳米纤维素-聚吡咯/天然橡胶柔性导电弹性体的制备与性能[J]. 复合材料学报, 2018, 35(10):18-29.

    HAN Jingquan, WANG Shaolin, YUE Yiying, et al. Preparation and characterization of cellulose nanofibers-polypyrrole/natural rubber flexible conductive elastomer[J]. Acta Materiae Compositae Sinica,2018,35(10):18-29(in Chinese).
    [19]
    BOUTRY C M, KAIZAWA Y, SCHROEDER B C, et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application[J]. Nature Electronics,2018,1(5):314-321. DOI: 10.1038/s41928-018-0071-7
    [20]
    SAHATIYA P, BADHULIKA S. Eraser-based eco-friendly fabrication of a skin-like large-area matrix of flexible carbon nanotube strain and pressure sensors[J]. Nanotechnology,2017,28(9):095501. DOI: 10.1088/1361-6528/aa5845
    [21]
    朱德举, 张超慧, 刘鹏. 天然和仿生柔性生物结构的设计[J]. 复合材料学报, 2018, 35(6):282-291.

    ZHU Deju, ZHANG Chaohui, LIU Peng. Design of natural and biomimetic flexible biological structures[J]. Acta Materiae Compositae Sinica,2018,35(6):282-291(in Chinese).
    [22]
    张太亮, 李黎明, 田天. PU/AgNWs/PDMS弹性导电复合材料的制备及性能研究[J]. 化工新型材料, 2016, 44(5):60-62.

    ZHANG Tailiang, LI Liming, TIAN Tian. Preparation and properties of PU/AgNWs/PDMS elastic conductive composites[J]. New Chemical Materials,2016,44(5):60-62(in Chinese).
    [23]
    WANG X, LI J F, SONG H N, et al. Highly stretchable and wearable strain sensor based on printable carbon nanotube layers/polydimethylsiloxane composites with adjustable sensitivity[J]. ACS Applied Materials & Interfaces,2018,10(8):7371-7380.
    [24]
    HAN S J, LIU C R, XU H H, et al. Multiscale nanowire-microfluidic hybrid strain sensors with high sensitivity and stretchability[J]. Nature Partner Journals Flexible Electronics,2018,2(1):16-23.
  • Related Articles

    [1]LI Buwei, YAO Junping, CHEN Guoxin, LI Yiran, LIANG Chaoqun. Effect of porosity defects on crack initiation and propagation behavior in SiC/AZ91D composites[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1554-1566. DOI: 10.13801/j.cnki.fhclxb.20230711.002
    [2]LIANG Chaoqun, YAO Junping, LI Yiran, XIAO Peng. Crack initiation and propagation mechanism during uniaxial compression of SiC/AZ91D magnesium matrix composites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4282-4293. DOI: 10.13801/j.cnki.fhclxb.20220922.003
    [3]LIU Chengyu, CHEN Chenghai, ZHANG Xiangxiang, CAO Yangbing, HE Xiyang. Crack propagation law and failure precursor of steel fiber reinforced concrete based on acoustic emission and microseism monitoring[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2240-2250. DOI: 10.13801/j.cnki.fhclxb.20220725.001
    [4]ZHANG Zhexuan, ZHOU Zaifeng, SHAN Quan, LI Zulai, JIANG Yehua. Effect of WCP shape of WCP/Fe composites on thermal fatigue crack propagation behavior based on stress intensity factor[J]. Acta Materiae Compositae Sinica, 2020, 37(2): 408-414. DOI: 10.13801/j.cnki.fhclxb.20190426.001
    [5]WU Qingxin, XIAO Yi, XUE Yuande. A quasi-static numerical analysis of crack dynamic propagation in double cantilever beam specimens[J]. Acta Materiae Compositae Sinica, 2019, 36(5): 1179-1188. DOI: 10.13801/j.cnki.fhclxb.20180726.002
    [6]ZHAO Zhenbo, XU Xiwu, GUO Shuxiang. Fatigue crack growth rate determination of graded titanium alloys and the influence of gradient for propagation life[J]. Acta Materiae Compositae Sinica, 2017, 34(1): 168-174. DOI: 10.13801/j.cnki.fhclxb.20160331.001
    [7]LYU Yi, XU Xiwu, GUO Shuxiang. Finite element analysis of crack propagation paths and crack initiation loads in graded composites[J]. Acta Materiae Compositae Sinica, 2015, 32(4): 1099-1106. DOI: 10.13801/j.cnki.fhclxb.20141022.001
    [8]LIU Weixian, ZHOU Guangming, WANG Xinfeng, GAO Jun. Theoretical analysis of crack propagation in composite DCB specimens[J]. Acta Materiae Compositae Sinica, 2014, 31(1): 207-212.
    [9]YU Hanghai, WANG Shouren, YANG Liying. Crack propagation resistance behavior of Si3N4 composites reinforced by BN nanotubes[J]. Acta Materiae Compositae Sinica, 2012, (6): 152-158.
    [10]WANG Can, CHEN Haoran. Experimental investigation and numerical simulation of interfacial crack kinking in foam core composite sandwich beams[J]. Acta Materiae Compositae Sinica, 2012, 29(1): 129-135.
  • Cited by

    Periodical cited type(4)

    1. 赵肖娟,王亚楠,邓璐,于嫚,孟志新. 创新创业背景下高分子物理的课堂设计——以BC/GO/PVA复合膜的制备及力学性能研究为例. 广东化工. 2024(13): 155-157 .
    2. 韩定,范晓天,姜瑾,刘辉辉,王梦瑶,王智. 聚苯并噁嗪/纤维素纳米晶复合材料的制备及性能. 工程塑料应用. 2022(04): 7-13 .
    3. 刘新路,罗立君,罗静,张茂盛,党新栋,刘首岐,倪书振. 壳聚糖-多巴胺/蒙脱土复合膜的制备和抗水性能研究. 纤维素科学与技术. 2022(02): 28-34 .
    4. 杨亮,李韦霖,宋鑫钥,王梦菲,李文全. 基于聚乙烯醇复合膜的改性研究进展. 印染助剂. 2022(11): 5-11 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (1770) PDF downloads (166) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return