Citation: | QI Jiaqi, DUAN Yuechen, TIE Ying, et al. Effect of structural parameters on the low-velocity impact performance of aluminum honeycomb sandwich plate with CFRP face sheets[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1352-1363. DOI: 10.13801/j.cnki.fhclxb.20190815.001 |
[1] |
GUNES R, ARSLAN K. Development of numerical realistic model for predicting low-velocity impact response of aluminium honeycomb sandwich structures[J]. Journal of Sandwich Structures & Materials,2016,18(1):95-112.
|
[2] |
AMRAEI M, SHAHRAVI M, NOORI Z, et al. Application of aluminium honeycomb sandwich panel as an energy absorber of high-speed train nose[J]. Journal of Composite Materials,2014,48(9):1027-1037. DOI: 10.1177/0021998313482019
|
[3] |
BUITRAGO B L, SANTIUSTE C, SONIA S S, et al. Modelling of composite sandwich structures with honeycomb core subjected to high-velocity impact[J]. Composite Structures,2010,92(9):2090-2096. DOI: 10.1016/j.compstruct.2009.10.013
|
[4] |
齐佳旗, 段玥晨, 李成, 等. 低速冲击下铝蜂窝夹层板的动态响应研究[J]. 玻璃钢/复合材料, 2019(05):5-11. DOI: 10.3969/j.issn.1003-0999.2019.05.001
QI Jiaqi, DUAN Yuechen, LI Cheng, et al. Dynamic response of aluminum honeycomb sandwich plate under low speed impact[J]. Fiber Reinforced Plastics/Composites,2019(05):5-11(in Chinese). DOI: 10.3969/j.issn.1003-0999.2019.05.001
|
[5] |
QIU Ang, FU Kunkun, LIN Wei, et al. Modelling low-speed drop-weight impact on composite laminates[J]. Materials and Design,2014,60:520-531.
|
[6] |
YAHAYA M A, RUAN D, LU G, et al. Response of aluminium honeycomb sandwich panels subjected to foam projectile impact—An experimental study[J]. International Journal of Impact Engineering,2015,75:100-109. DOI: 10.1016/j.ijimpeng.2014.07.019
|
[7] |
CRUPI V, EPASTO G, GUGLIELMINO E. Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading[J]. International Journal of Impact Engineering,2012,43(5):6-15.
|
[8] |
GARAM K, RONALD S, WATERLOO T. Investigating the effects of fluid intrusion on Nomex-honeycomb sandwich structures with carbon fiber facesheets[J]. Composite Structures,2018,206:535-549.
|
[9] |
GIULIA P, GABRIELLA E, VINCENZO C, et al. Single and double-layer honeycomb sandwich panels under impact loading[J]. International Journal of Impact Engineering,2018,121:77-90. DOI: 10.1016/j.ijimpeng.2018.07.013
|
[10] |
CACCESE V, FERGUSON J R, EDGECOMB M A. Optimal design of honeycomb material used to mitigate head impact[J]. Composite Structures,2013,100:404-412.
|
[11] |
SUN Guangyong, CHEN Dongdong, HUO Xintao, et al. Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels[J]. Composite Structures,2018,184:110-124.
|
[12] |
ZHANG Dahai, JIANG Dong, FEI Qingguo, et al. Experimental and numerical investigation on indentation and energy absorption of a honeycomb sandwich panel under low-velocity impact[J]. Finite Elements in Analysis & Design,2016,117-118:21-30.
|
[13] |
CHEN Yuan, HOU Shujuan, FU Kunkun, et al. Low-velocity impact response of composite sandwich structures: Modelling and experiment[J]. Composite Structures,2017,168:322-334.
|
[14] |
RICCIO A, RAIMONDO A, SAPUTO S, et al. A numerical study on the impact behaviour of natural fibres made honeycomb cores[J]. Composite Structures,2018,202:909-916.
|
[15] |
SUN M Q, WOWK D, MECHEFSKE C, et al. An analytical study of the plasticity of sandwich honeycomb panels subjected to low-velocity impact[J]. Composites Part B: Engineering,2019,168:121-128. DOI: 10.1016/j.compositesb.2018.12.071
|
[16] |
CRUPI V, KARA E, EPASTO G, et al. Theoretical and experimental analysis for the impact response of glass fibre reinforced aluminium honeycomb sandwiches[J]. Journal of Sandwich Structures & Materials,2018,20:42-69.
|
[17] |
IVAÑEZ I, SANCHEZ-SAEZ S. Numerical modelling of the low-velocity impact response of composite sandwich beams with honeycomb core[J]. Composite Structures,2013,106:716-723.
|
[18] |
MENNA C, ZINNO A, ASPRONE D, et al. Numerical assessment of the impact behavior of honeycomb sandwich structures[J]. Composite Structures,2013,106:326-339. DOI: 10.1016/j.compstruct.2013.06.010
|
[19] |
IVAÑEZ I, MOURE M M, GARCIA-CASTILLO S K, et al. The oblique impact response of composite sandwich plates[J]. Composite Structures,2015,133:1127-1136. DOI: 10.1016/j.compstruct.2015.08.035
|
[20] |
AUDIBERT C, ANDRÉANI A, LAINÉ É, et al. Discrete modelling of low-velocity impact on Nomex® honeycomb sandwich structures with CFRP skins[J]. Composite Structures,2019,207:108-118. DOI: 10.1016/j.compstruct.2018.09.047
|
[21] |
CRUPI V, EPASTO G, GUGLIELMINO E. Comparison of aluminium sandwiches for lightweight ship structures: Honeycomb vs. foam[J]. Marine Structures,2013,30:74-96.
|
[22] |
张俊琪, 刘龙权, 汪海. 薄面板复合材料蜂窝夹层结构冲击试验[J]. 复合材料学报, 2014, 31(4):1063-1071.
ZHANG Junqi, LIU Longquan, WANG Hai. Test of composite honeycomb sandwich structure with thin facesheet subject to impact load[J]. Acta Materiae Compositae Sinica,2014,31(4):1063-1071(in Chinese).
|
[23] |
ASTM International. Standard practice for damage resistance testing of sandwich constructions: ASTM D7766/D7766M—11[S]. USA: West Conshohocken, PA, 2011.
|
[24] |
孙振辉, 铁瑛, 侯玉亮, 等. 相对冲击位置和补片层数对胶接修理CFRP复合材料层合板抗冲击性能的影响[J]. 复合材料学报, 2019, 36(5):1114-1123.
SUN Zhenhui, TIE Ying, HOU Yuliang, et al. Effect of relative impact location and patch layer number on impact resistance of adhesive repaired CFRP laminates[J]. Acta Materiae Compositae Sinica,2019,36(5):1114-1123(in Chinese).
|
[25] |
TIE Ying, HOU Yuliang, LI Cheng, et al. An insight into the low-velocity impact behavior of patch-repaired CFRP laminates using numerical and experimental approaches[J]. Composite Structures,2018,190:179-188.
|
[26] |
ABAQUS Version 6.14 Documentation ABAQUS Analysis User’s Manual.
|
[27] |
韩学群. 复合材料层合板分层损伤数值模拟[D]. 武汉: 武汉理工大学, 2010.
HAN Xuequn. Numerical simulation of delamination damage for composite laminates[D]. Wuhan: Wuhan University of Technology, 2010(in Chinese).
|
[28] |
ABRATE S, FERRERO J F, NAVARRO P. Cohesive zone models and impact damage predictions for composite structures[J]. Meccanica,2015,50(10):2587-2620.
|
[1] | SUN Yan, MA Xiangdong, CHEN Machao, XIE Xiaoyang, HE Jiaojie, LI Xiaoling, ZHAO Xiaohong, YANG Liwei. Research progress of positively charged composite nanofiltration membrane for lithium extraction from high magnesium/lithium ratio salt lakes[J]. Acta Materiae Compositae Sinica. |
[2] | WANG Lei, WANG Lei. Preparation of polyvinyl chloride lithium ion sieve membrane and its lithium adsorption properties in brine[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5107-5123. DOI: 10.13801/j.cnki.fhclxb.20221124.002 |
[3] | GAO Yu'nan, ZHOU Litao, WANG Jing, RU Yafang, SUN Meiqiao, FU Jinxiang. Preparation and performances of chitosan/zeolite molecular sieve composite adsorbed particles[J]. Acta Materiae Compositae Sinica, 2019, 36(3): 701-707. DOI: 10.13801/j.cnki.fhclxb.20180529.003 |
[4] | WANG Na, LUAN Honghe, ZHANG Jing, FANG Qinghong. Synergistic effects of mesoporous molecular sieve and Cr2O3 with intumescent flame retardant on properties of flame-retarded natural rubber[J]. Acta Materiae Compositae Sinica, 2017, 34(5): 963-969. DOI: 10.13801/j.cnki.fhclxb.20160801.001 |
[5] | YANG Lili, LI Chuanguo, WANG Hong, HU Tingting, ZHANG Wenjie. Photocatalytic degradation of reactive brilliant red X-3B on SrTiO3 supported on HZSM-5 molecular sieve[J]. Acta Materiae Compositae Sinica, 2016, 33(11): 2682-2687. DOI: 10.13801/j.cnki.fhclxb.20160220.001 |
[6] | WANG Shaohui, XU Man, LUO Pan, MU Qiulin, XIE Darong, LI Yangping. Surface modification of different coupling agents on mesoporous molecular sieve MCM-41 and effects on properties of MCM-41/epoxy[J]. Acta Materiae Compositae Sinica, 2016, 33(2): 249-258. DOI: 10.13801/j.cnki.fhclxb.20150518.006 |
[7] | GUO Junxian, WANG Bo, YANG Zhenyu. Molecular dynamics simulations on the mechanical properties of graphene/Cu composites[J]. Acta Materiae Compositae Sinica, 2014, 31(1): 152-157. |
[8] | LU Chang, HUANG Xinhui, HE Yuxin, ZHANG Yuqing. Preparation of mesoporous-molecular-sieve/polydicyclopentadiene composites[J]. Acta Materiae Compositae Sinica, 2012, (2): 65-72. |
[9] | YU Jie, CHEN Jingchao, HONG Zhenjun, FENG Jing. Molecular dynamic simulations on the process of Ag Al2O3 powder[J]. Acta Materiae Compositae Sinica, 2011, 28(5): 150-155. |
[10] | MO Zunli, GUO Ruibin, CHEN Hong, SUN Yaling, LI Hejun. Molecular dynamics simulation study on graphite/dendrimers composite materials[J]. Acta Materiae Compositae Sinica, 2007, 24(4): 58-62. |