QI Jiaqi, DUAN Yuechen, TIE Ying, et al. Effect of structural parameters on the low-velocity impact performance of aluminum honeycomb sandwich plate with CFRP face sheets[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1352-1363. DOI: 10.13801/j.cnki.fhclxb.20190815.001
Citation: QI Jiaqi, DUAN Yuechen, TIE Ying, et al. Effect of structural parameters on the low-velocity impact performance of aluminum honeycomb sandwich plate with CFRP face sheets[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1352-1363. DOI: 10.13801/j.cnki.fhclxb.20190815.001

Effect of structural parameters on the low-velocity impact performance of aluminum honeycomb sandwich plate with CFRP face sheets

More Information
  • Received Date: June 26, 2019
  • Accepted Date: July 25, 2019
  • Available Online: August 14, 2019
  • The effect of the size of honeycomb core unit on the resistance of sandwich plate of carbon fiber reinforced polymer (CFRP) under low-velocity impact load was investigated by using the impact test system of hemisphere-head drop hammer. Based on the continuous damage mechanics model, cohesive element model and 3D Hashin damage criteria, a refined low-velocity impact simulation model for honeycomb sandwich plate with CFRP face sheets, aluminum honeycomb core and cohesive films was established in finite element simulation software ABAQUS. The simulation results are in good agreement with the experimental results. The effects of structural parameters, such as the height of honeycomb core, the thickness of face sheets and the thickness of honeycomb cell wall, on the energy absorption of honeycomb sandwich plate were further investigated by using the numerical model. The results show that increasing the cell side length of aluminum honeycomb core can reduce the stiffness of honeycomb sandwich plate and improve the energy absorption effect of sandwich plate. The core height has little effect on the stiffness and low-velocity impact resistance of the sandwich plate. Increasing the skin thickness of honeycomb sandwich board can improve the stiffness of sandwich board, but reduce the energy absorption effect of sandwich board. Increasing the cell wall thickness can improve the stiffness and low-velocity impact resistance of sandwich board.
  • [1]
    GUNES R, ARSLAN K. Development of numerical realistic model for predicting low-velocity impact response of aluminium honeycomb sandwich structures[J]. Journal of Sandwich Structures & Materials,2016,18(1):95-112.
    [2]
    AMRAEI M, SHAHRAVI M, NOORI Z, et al. Application of aluminium honeycomb sandwich panel as an energy absorber of high-speed train nose[J]. Journal of Composite Materials,2014,48(9):1027-1037. DOI: 10.1177/0021998313482019
    [3]
    BUITRAGO B L, SANTIUSTE C, SONIA S S, et al. Modelling of composite sandwich structures with honeycomb core subjected to high-velocity impact[J]. Composite Structures,2010,92(9):2090-2096. DOI: 10.1016/j.compstruct.2009.10.013
    [4]
    齐佳旗, 段玥晨, 李成, 等. 低速冲击下铝蜂窝夹层板的动态响应研究[J]. 玻璃钢/复合材料, 2019(05):5-11. DOI: 10.3969/j.issn.1003-0999.2019.05.001

    QI Jiaqi, DUAN Yuechen, LI Cheng, et al. Dynamic response of aluminum honeycomb sandwich plate under low speed impact[J]. Fiber Reinforced Plastics/Composites,2019(05):5-11(in Chinese). DOI: 10.3969/j.issn.1003-0999.2019.05.001
    [5]
    QIU Ang, FU Kunkun, LIN Wei, et al. Modelling low-speed drop-weight impact on composite laminates[J]. Materials and Design,2014,60:520-531.
    [6]
    YAHAYA M A, RUAN D, LU G, et al. Response of aluminium honeycomb sandwich panels subjected to foam projectile impact—An experimental study[J]. International Journal of Impact Engineering,2015,75:100-109. DOI: 10.1016/j.ijimpeng.2014.07.019
    [7]
    CRUPI V, EPASTO G, GUGLIELMINO E. Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading[J]. International Journal of Impact Engineering,2012,43(5):6-15.
    [8]
    GARAM K, RONALD S, WATERLOO T. Investigating the effects of fluid intrusion on Nomex-honeycomb sandwich structures with carbon fiber facesheets[J]. Composite Structures,2018,206:535-549.
    [9]
    GIULIA P, GABRIELLA E, VINCENZO C, et al. Single and double-layer honeycomb sandwich panels under impact loading[J]. International Journal of Impact Engineering,2018,121:77-90. DOI: 10.1016/j.ijimpeng.2018.07.013
    [10]
    CACCESE V, FERGUSON J R, EDGECOMB M A. Optimal design of honeycomb material used to mitigate head impact[J]. Composite Structures,2013,100:404-412.
    [11]
    SUN Guangyong, CHEN Dongdong, HUO Xintao, et al. Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels[J]. Composite Structures,2018,184:110-124.
    [12]
    ZHANG Dahai, JIANG Dong, FEI Qingguo, et al. Experimental and numerical investigation on indentation and energy absorption of a honeycomb sandwich panel under low-velocity impact[J]. Finite Elements in Analysis & Design,2016,117-118:21-30.
    [13]
    CHEN Yuan, HOU Shujuan, FU Kunkun, et al. Low-velocity impact response of composite sandwich structures: Modelling and experiment[J]. Composite Structures,2017,168:322-334.
    [14]
    RICCIO A, RAIMONDO A, SAPUTO S, et al. A numerical study on the impact behaviour of natural fibres made honeycomb cores[J]. Composite Structures,2018,202:909-916.
    [15]
    SUN M Q, WOWK D, MECHEFSKE C, et al. An analytical study of the plasticity of sandwich honeycomb panels subjected to low-velocity impact[J]. Composites Part B: Engineering,2019,168:121-128. DOI: 10.1016/j.compositesb.2018.12.071
    [16]
    CRUPI V, KARA E, EPASTO G, et al. Theoretical and experimental analysis for the impact response of glass fibre reinforced aluminium honeycomb sandwiches[J]. Journal of Sandwich Structures & Materials,2018,20:42-69.
    [17]
    IVAÑEZ I, SANCHEZ-SAEZ S. Numerical modelling of the low-velocity impact response of composite sandwich beams with honeycomb core[J]. Composite Structures,2013,106:716-723.
    [18]
    MENNA C, ZINNO A, ASPRONE D, et al. Numerical assessment of the impact behavior of honeycomb sandwich structures[J]. Composite Structures,2013,106:326-339. DOI: 10.1016/j.compstruct.2013.06.010
    [19]
    IVAÑEZ I, MOURE M M, GARCIA-CASTILLO S K, et al. The oblique impact response of composite sandwich plates[J]. Composite Structures,2015,133:1127-1136. DOI: 10.1016/j.compstruct.2015.08.035
    [20]
    AUDIBERT C, ANDRÉANI A, LAINÉ É, et al. Discrete modelling of low-velocity impact on Nomex® honeycomb sandwich structures with CFRP skins[J]. Composite Structures,2019,207:108-118. DOI: 10.1016/j.compstruct.2018.09.047
    [21]
    CRUPI V, EPASTO G, GUGLIELMINO E. Comparison of aluminium sandwiches for lightweight ship structures: Honeycomb vs. foam[J]. Marine Structures,2013,30:74-96.
    [22]
    张俊琪, 刘龙权, 汪海. 薄面板复合材料蜂窝夹层结构冲击试验[J]. 复合材料学报, 2014, 31(4):1063-1071.

    ZHANG Junqi, LIU Longquan, WANG Hai. Test of composite honeycomb sandwich structure with thin facesheet subject to impact load[J]. Acta Materiae Compositae Sinica,2014,31(4):1063-1071(in Chinese).
    [23]
    ASTM International. Standard practice for damage resistance testing of sandwich constructions: ASTM D7766/D7766M—11[S]. USA: West Conshohocken, PA, 2011.
    [24]
    孙振辉, 铁瑛, 侯玉亮, 等. 相对冲击位置和补片层数对胶接修理CFRP复合材料层合板抗冲击性能的影响[J]. 复合材料学报, 2019, 36(5):1114-1123.

    SUN Zhenhui, TIE Ying, HOU Yuliang, et al. Effect of relative impact location and patch layer number on impact resistance of adhesive repaired CFRP laminates[J]. Acta Materiae Compositae Sinica,2019,36(5):1114-1123(in Chinese).
    [25]
    TIE Ying, HOU Yuliang, LI Cheng, et al. An insight into the low-velocity impact behavior of patch-repaired CFRP laminates using numerical and experimental approaches[J]. Composite Structures,2018,190:179-188.
    [26]
    ABAQUS Version 6.14 Documentation ABAQUS Analysis User’s Manual.
    [27]
    韩学群. 复合材料层合板分层损伤数值模拟[D]. 武汉: 武汉理工大学, 2010.

    HAN Xuequn. Numerical simulation of delamination damage for composite laminates[D]. Wuhan: Wuhan University of Technology, 2010(in Chinese).
    [28]
    ABRATE S, FERRERO J F, NAVARRO P. Cohesive zone models and impact damage predictions for composite structures[J]. Meccanica,2015,50(10):2587-2620.
  • Related Articles

    [1]SUN Yan, MA Xiangdong, CHEN Machao, XIE Xiaoyang, HE Jiaojie, LI Xiaoling, ZHAO Xiaohong, YANG Liwei. Research progress of positively charged composite nanofiltration membrane for lithium extraction from high magnesium/lithium ratio salt lakes[J]. Acta Materiae Compositae Sinica.
    [2]WANG Lei, WANG Lei. Preparation of polyvinyl chloride lithium ion sieve membrane and its lithium adsorption properties in brine[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5107-5123. DOI: 10.13801/j.cnki.fhclxb.20221124.002
    [3]GAO Yu'nan, ZHOU Litao, WANG Jing, RU Yafang, SUN Meiqiao, FU Jinxiang. Preparation and performances of chitosan/zeolite molecular sieve composite adsorbed particles[J]. Acta Materiae Compositae Sinica, 2019, 36(3): 701-707. DOI: 10.13801/j.cnki.fhclxb.20180529.003
    [4]WANG Na, LUAN Honghe, ZHANG Jing, FANG Qinghong. Synergistic effects of mesoporous molecular sieve and Cr2O3 with intumescent flame retardant on properties of flame-retarded natural rubber[J]. Acta Materiae Compositae Sinica, 2017, 34(5): 963-969. DOI: 10.13801/j.cnki.fhclxb.20160801.001
    [5]YANG Lili, LI Chuanguo, WANG Hong, HU Tingting, ZHANG Wenjie. Photocatalytic degradation of reactive brilliant red X-3B on SrTiO3 supported on HZSM-5 molecular sieve[J]. Acta Materiae Compositae Sinica, 2016, 33(11): 2682-2687. DOI: 10.13801/j.cnki.fhclxb.20160220.001
    [6]WANG Shaohui, XU Man, LUO Pan, MU Qiulin, XIE Darong, LI Yangping. Surface modification of different coupling agents on mesoporous molecular sieve MCM-41 and effects on properties of MCM-41/epoxy[J]. Acta Materiae Compositae Sinica, 2016, 33(2): 249-258. DOI: 10.13801/j.cnki.fhclxb.20150518.006
    [7]GUO Junxian, WANG Bo, YANG Zhenyu. Molecular dynamics simulations on the mechanical properties of graphene/Cu composites[J]. Acta Materiae Compositae Sinica, 2014, 31(1): 152-157.
    [8]LU Chang, HUANG Xinhui, HE Yuxin, ZHANG Yuqing. Preparation of mesoporous-molecular-sieve/polydicyclopentadiene composites[J]. Acta Materiae Compositae Sinica, 2012, (2): 65-72.
    [9]YU Jie, CHEN Jingchao, HONG Zhenjun, FENG Jing. Molecular dynamic simulations on the process of Ag Al2O3 powder[J]. Acta Materiae Compositae Sinica, 2011, 28(5): 150-155.
    [10]MO Zunli, GUO Ruibin, CHEN Hong, SUN Yaling, LI Hejun. Molecular dynamics simulation study on graphite/dendrimers composite materials[J]. Acta Materiae Compositae Sinica, 2007, 24(4): 58-62.

Catalog

    Article Metrics

    Article views (1705) PDF downloads (247) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return