ZHOU Jinqiu, WANG Zhenjun, YANG Siyuan, et al. Damage evolution and fracture behaviors of continuous graphite fiber reinforced aluminium matrix composites subjected to quasi-static tensile loading[J]. Acta Materiae Compositae Sinica, 2020, 37(4): 907-918. doi: 10.13801/j.cnki.fhclxb.20190726.001
Citation: ZHOU Jinqiu, WANG Zhenjun, YANG Siyuan, et al. Damage evolution and fracture behaviors of continuous graphite fiber reinforced aluminium matrix composites subjected to quasi-static tensile loading[J]. Acta Materiae Compositae Sinica, 2020, 37(4): 907-918. doi: 10.13801/j.cnki.fhclxb.20190726.001

Damage evolution and fracture behaviors of continuous graphite fiber reinforced aluminium matrix composites subjected to quasi-static tensile loading

doi: 10.13801/j.cnki.fhclxb.20190726.001
  • Received Date: 2019-04-12
  • Publish Date: 2020-04-15
  • According to the microstructure of the continuous graphite fiber reinforced aluminium matrix (CF/Al) composites, the micromechanical finite element model was established based on the representative volume element (RVE) with different fibre arrangements. The progressive damage and fracture behaviors of the CF/Al composites under axial tensile condition were investigated by quasi-static tensile testing and numerical simulation method. The results show that the axial tensile modulus and strength calculated by the micromechanical model with the diagonal quadrilateral fiber arrangement agree well with the experimental results, while the fracture strain is underestimated. At the first tensile stage, the interface damage initiates and accumulates. With the increase of strain, the interface damage induces the local interfacial debonding and matrix alloy failure at the middle stage. At the last stage, the occurrence of fiber failure leads to the eventual fracture of the composites, which results in a fracture surface with coexistence of matrix tearing and fiber pull out. According to the micromechanical calculation results, the influence of interfacial strength and stiffness on the axial tensile behavior is inapparent in the case of insufficient fiber strength, while the axial mechanical properties of the composite are primarily determined by the in-situ fiber ultimate strength.

     

  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (594) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return