WAN Yumin, ZHANG Fa, LIU Changxi, et al. Overall buckling of typical thin-wall sandwich composites applied on the aircraft[J]. Acta Materiae Compositae Sinica, 2018, 35(8): 2235-2245. DOI: 10.13801/j.cnki.fhclxb.20180402.006
Citation: WAN Yumin, ZHANG Fa, LIU Changxi, et al. Overall buckling of typical thin-wall sandwich composites applied on the aircraft[J]. Acta Materiae Compositae Sinica, 2018, 35(8): 2235-2245. DOI: 10.13801/j.cnki.fhclxb.20180402.006

Overall buckling of typical thin-wall sandwich composites applied on the aircraft

More Information
  • Received Date: November 22, 2017
  • Revised Date: March 26, 2018
  • In order to study the feasibility of applying typical thin-wall sandwich composite without ribs and frames reinforcement on the aircraft fuselage, overall buckling performance of the honeycomb sandwich composite under the in-plane compression and shear load was studied using analytical method, finite element method (FEM) and experiment. Based on the classical laminated plate theory and the engineering analytical method, the variation of the buckling load of honeycomb sandwich composites with the sample size was given and compared with the finite element results. Two typical sizes of sandwich structure were designed, and boundary conditions and loading methods were defined based on a certain type of typical aircraft fuselage structure. Finally, the buckling loads obtained by analytic solution and FEM were compared with the experimental results, which verified the bearing capacity and failure mode of the typical thin-wall sandwich structure. The results show that the test compression failure mode is consistent with the theoretical prediction, so the overall buckling load calculated through the three methods is almost equal to each other. Because local failures occur in the shear test, so the experimental result is lower than FEM result and analytic result. However, the FEM results and the analytical results are consistent, which could verify their effectiveness. And it's found that the analytical method is relatively conservative.
  • Related Articles

    [1]LIU Yanyan, SHENG Baolu, HUANG Dongsheng, WANG Wendao, ZHANG Kun. Accelerated creep testing of tensile properties of glued laminated bamboo[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 990-1000. DOI: 10.13801/j.cnki.fhclxb.20230625.003
    [2]SONG Yinbo, CHEN Wujun, GAO Chengjun, CHEN Longlong, WANG Xiaoqing, YAN Yongsheng. Uniaxial tensile creep experiment and creep model of fabric for airship structures[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 5041-5048. DOI: 10.13801/j.cnki.fhclxb.20211116.001
    [3]ZHANG Yao, ZHU Sirong, LU Shiping, LV Yong, CHEN Jianzhong. Creep model of GFRP composites considering interface effect[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3682-3692. DOI: 10.13801/j.cnki.fhclxb.20210119.001
    [4]CHEN Si, WEI Yang, ZHAO Kunpeng, HANG Chen, ZHAO Kang. Creep performance and prediction model of bamboo scrimber under compression[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 944-952. DOI: 10.13801/j.cnki.fhclxb.20200615.002
    [5]HAN Xia, WANG Jihui, NI Aiqing, CHEN Hongda, SUN Ziheng. Effects of stress levels and fiber orientations on creep behavior of CGF/PP composite and numerical prediction of Burgers model parameters[J]. Acta Materiae Compositae Sinica, 2019, 36(5): 1216-1225. DOI: 10.13801/j.cnki.fhclxb.20180725.003
    [6]CUI Ya'nan, SUN Guangning, HAN Jiwei, ZHAO Lin. Microstructure and high-and-low temperature performance of two kinds of asphalt under salt freezing cycle[J]. Acta Materiae Compositae Sinica, 2017, 34(4): 906-914. DOI: 10.13801/j.cnki.fhclxb.20160616.004
    [7]WANG Lan, WANG Zihao, LI Chao. Low temperature performance of polyphosphoric acid asphalt based on viscoelastic theory[J]. Acta Materiae Compositae Sinica, 2017, 34(2): 322-328. DOI: 10.13801/j.cnki.fhclxb.20160413.003
    [8]LU Zixing, HUANG Jixiang, YUAN Zeshuai. Influence of micro-structure on creep properties of foam materials[J]. Acta Materiae Compositae Sinica, 2016, 33(11): 2641-2648. DOI: 10.13801/j.cnki.fhclxb.20160411.007
    [9]HAN Jiwei, CUI Ya'nan, LI Jiadi, ZHANG Shuyan, WANG Le. Microstructure and rheological properties at low temperature of modified asphalt under salt freezing cycle[J]. Acta Materiae Compositae Sinica, 2016, 33(8): 1718-1724. DOI: 10.13801/j.cnki.fhclxb.20151214.001
    [10]CAO Yan, XU Hailong, WANG Weihong, WANG Qingwen. Creep properties and creep model of poplar wood fiber/high-density polyethylene composites prepared by compression molding[J]. Acta Materiae Compositae Sinica, 2016, 33(6): 1174-1178. DOI: 10.13801/j.cnki.fhclxb.20160107.004
  • Cited by

    Periodical cited type(8)

    1. 赵鼎元,刘思思,廖君慧,傅兵,刘金刚. 碳纳米管-碳纤维增强二硫化钨/聚酰胺酰亚胺复合涂层摩擦学性能研究. 摩擦学学报(中英文). 2024(08): 1125-1135 .
    2. 楚电明,董乾鹏,白文娟,何燕. 碳纤维/碳纳米管界面增强技术研究进展. 化工新型材料. 2023(01): 1-7 .
    3. 周明明,刘威,杨成祥,赵修贤,杨震,路翔翔,蒋绪川. 多核稀土离子掺杂有机配合物转光剂的制备与应用. 复合材料学报. 2023(04): 2131-2139 . 本站查看
    4. 夏伟,陆松,白二雷,许金余,杜宇航,姚廒. 碳纳米管-碳纤维复合改性混凝土力学性能研究. 材料导报. 2023(16): 110-118 .
    5. 李传习,鄢亦斌,高有为,李御航,司睹英胡. CFRP板及其浸渍胶性能的纳米增韧剂影响研究. 交通科学与工程. 2023(04): 54-61+79 .
    6. 孙伟松,于思荣,薛瑞婷,尹晓丽,王珺,王丽媛. 氨基链修饰氧化石墨烯/环氧树脂界面性能的分子动力学模拟. 表面技术. 2022(02): 241-248 .
    7. 刘刚,欧宝立,赵欣欣,彭彩茹,汪雨微. 共价功能化石墨烯超疏水防腐复合涂层材料的制备. 复合材料学报. 2021(10): 3236-3246 . 本站查看
    8. 胡玮. 复合材料增强体纤维性能分析. 天津化工. 2021(06): 83-86 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (1459) PDF downloads (373) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return