The carbon fiber composite laminates were manufactured in different curing pressures by autoclave process. The relationship between the ultrasonic phased array C scanning image and the defects of microstructure was analyzed, and the correlations among curing pressure, voids and mechanical properties were studied. The results indicate that ultrasonic C scanning image can be used to characterize the content of voids. In this experiment condition, the curing pressure increases from 0 MPa to 0.6 MPa, the porosity decreases by 96.7%, and the tensile strength(TS) and interlaminar shear strength(ILSS) increase by 56.1% and 68.8%, respectively. On this basis, the C scanning images of composite laminate in different curing pressures were processed, and the forming quality index was defined. Thus, the quantitative characterization of voids based on C scanning images was realized. Finally, through mathematical fitting of the results of voids detection, mechanical properties test and image quantitative evaluation, a mathematical model(CPDMP model) among curing pressure-defects-mechanical properties based on image processing was established. In addition, the forming quality index threshold of 81%, the acceptable porosity of more than 1.1% and the corresponding curing pressure of more than 0.35 MPa were presented.