CHEN Fengrui, SHAN Quan, LI Zulai, et al. Effect of re-melting temperature on interface and compression fracture mechanism of WCP/Fe composites[J]. Acta Materiae Compositae Sinica, 2018, 35(11): 3106-3113. DOI: 10.13801/j.cnki.fhclxb.20180305.001
Citation: CHEN Fengrui, SHAN Quan, LI Zulai, et al. Effect of re-melting temperature on interface and compression fracture mechanism of WCP/Fe composites[J]. Acta Materiae Compositae Sinica, 2018, 35(11): 3106-3113. DOI: 10.13801/j.cnki.fhclxb.20180305.001

Effect of re-melting temperature on interface and compression fracture mechanism of WCP/Fe composites

More Information
  • Corresponding author:

    山泉,博士,讲师,研究方向为复合材料及耐磨材料,E-mail:asanshan@foxmail.com

  • Received Date: November 15, 2017
  • Revised Date: January 15, 2018
  • In order to investigate the effects of re-melting temperature on the interface characteristics and mechanical properties of WCP/Fe composites, the WCP/Fe composites were prepared by powder sintering and the interface of the composites were re-melted at the different temperatures. The research provides a theoretical basis for the interface structure design and the application of particle reinforced metal matrix composites. The results show that a phase transition reaction occurs from WC to W2C with the increase of the re-melting temperature, and W2C reacts with Fe to generate the solid Fe3W3C phase. Besides, the width of interface reaction zone increases with the increase of the re-melting temperature. The interfacial morphology is transformed from discontinuous cycle to a continuous cycle and then to serration shape. The compressive strength of the WCP/Fe composites exhibits the trend of increasing and then decreasing. When re-melting temperature is 1 300℃, the interface width is 13.5 μm and the interface reaction zone appears in continuous cycle shape. The internal compressive cracks of the composites are not inclined to initiate and propagation. Meanwhile, the compression strength of composites is 386 MPa when it reaches the maximum.
  • Related Articles

    [1]WANG Jihua, LIU Junwang, WANG Chunfeng, WANG Yongliang, HAN Zhidong. Dielectric properties and preparation of microcapacitor of polyvinylidene fluoride matrix composite[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1426-1434. DOI: 10.13801/j.cnki.fhclxb.20200922.006
    [2]ZHANG Zijing, LIU Chang, LI Ruhui, WU Chonggang, GONG Xinghou, HU Tao. Preparation and dielectric properties of silanized multi-walled carbon nanotubes/silicone rubber composites[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1675-1683. DOI: 10.13801/j.cnki.fhclxb.20191113.004
    [3]ZHANG Mingyan, WANG Denghui, WU Zijian, YANG Zhenhua, LIU Ju. Dielectric properties of modified carbon nanotube/epoxy composites[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1285-1294. DOI: 10.13801/j.cnki.fhclxb.20191105.001
    [4]YAN Shicheng, XUE Yahong, YANG Yulin, BAO Qianqian, WEI Liming, ZHAO Nan. Thermal insulation and dielectric properties of aluminium phosphate-polyethersulphone layered composites[J]. Acta Materiae Compositae Sinica, 2017, 34(9): 1919-1925. DOI: 10.13801/j.cnki.fhclxb.20161130.003
    [5]CUI Xiaoping, ZHU Guangming, LIU Wenyuan. Dielectric and mechanical properties of nano Al2O3/polyimide composite films[J]. Acta Materiae Compositae Sinica, 2016, 33(11): 2419-2425. DOI: 10.13801/j.cnki.fhclxb.20160108.002
    [6]CHEN Dong, JU Jianguo, HAO Xufeng. Dielectric properties of quartz fiber reinforced KH308 composites[J]. Acta Materiae Compositae Sinica, 2014, 31(3): 563-568.
    [7]YAO Guoguang, LIU Peng. Microwave dielectric properties of Mg4Nb2O9/CaTiO3 composite ceramics[J]. Acta Materiae Compositae Sinica, 2011, 28(1): 94-98.
    [8]SONG Xiugong, WANG Jihui, GAO Guoqiang. Temperature and dielectric property of resin during RTM process[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 18-21.
    [9]GAO Feng, YANG Zupei, LIU Xiangchun, TIAN Changsheng. PHASE STRUCTURE AND DIELECTRIC PROPERTIES OF FERROELECTRICS AND FERRITE MIXED COMPOSITES[J]. Acta Materiae Compositae Sinica, 2004, 21(5): 22-27.
    [10]DONG Lijie, XIONG Chuanxi, CHEN Juan, LIU Qihong, WANG Yanbing, REN Zhongkui. DIELECTRIC PROPERTY OF BaTiO3/PVDF COMPOSITE PREPARED BY A MELT PROCESS[J]. Acta Materiae Compositae Sinica, 2003, 20(3): 122-126.
  • Cited by

    Periodical cited type(4)

    1. 于丹. 聚氯乙烯/碳纳米管复合材料的制备和性能研究. 塑料科技. 2024(01): 36-39 .
    2. 余澎,涂操,郭博森,王闻达,赵航,彭玉婷,罗卫华. 木质素基碳纳米管/炭复合材料的制备及电化学性能研究. 现代化工. 2023(02): 92-97 .
    3. 冀佳帅,杜佳琪,陈俊琳,张新民,刘伟,宋朝霞. Co-Fe普鲁士蓝/多壁碳纳米管复合材料的超电容性能. 材料科学与工艺. 2023(04): 1-8 .
    4. 张开砚. 电感耦合等离子体发射光谱法测定普鲁士蓝类正极材料中铁和钠. 化学分析计量. 2022(08): 26-30 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (935) PDF downloads (256) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return