CHEN Yueliang, WANG Andong, BIAN Guixue, et al. Aging mechanism and equivalent acceleration relationship of G827/3234 composite in the marine environment[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3304-3312. DOI: 10.13801/j.cnki.fhclxb.20180207.002
Citation: CHEN Yueliang, WANG Andong, BIAN Guixue, et al. Aging mechanism and equivalent acceleration relationship of G827/3234 composite in the marine environment[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3304-3312. DOI: 10.13801/j.cnki.fhclxb.20180207.002

Aging mechanism and equivalent acceleration relationship of G827/3234 composite in the marine environment

More Information
  • Received Date: November 22, 2017
  • Revised Date: January 12, 2018
  • The accelerated aging test in lab and natural exposure test on ship in the marine environment for G827/3234 composite were carried out.By using the universal testing machine, optical microscope, SEM, DMA, FTIR and so on, the surface and fracture morphology, mechanical property and composition of G827/3234 composite were observed and measured before and after aging.The regression analysis method for the strength median curve of G827/3234 under the natural aging condition was improved, and the equivalent accelerated relationship between the accelerated aging and natural aging was obtained based on the strength retention rate and it was verified. The results show that, after one month of accelerated aging, the flexural strength and flexural modulus of G827/3234 composite are decreased by 1.43% and 4.45%, the decline of interlaminar shear strength is 8.80%, the anti-fatigue property is essentially the same, the glass transition temperature is decreased by 6.2℃, the in ternal friction increases and the storage modulus is decreased by about 5 GPa.The mechanism in the accelerated aging and the strength median equation in the natural aging under the marine environment are given out.The equivalent coefficient of accelerated aging to natural aging is 4.52.The aging mechanism of the two are basically the same and the coefficient is proved to be effective and available.
  • Related Articles

    [1]ZHANG Guangyi, LI Zezhuang, ZHANG Chao, XIA Yangyang, MENG Penghui, FANG Hongyuan. Accelerated aging behavior of glass fiber reinforced methacrylate-based cured-in-place-pipe lining in seawater and sulfuric acid[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 299-309. DOI: 10.13801/j.cnki.fhclxb.20240506.003
    [2]GAO Junguo, ZHANG Guangwei, LIU Yanli, JU Huicheng, LIU Liwei, LIU Xiongjun, HAN Xiao. Evaluation of electrical aging life of nano SiO2/PP composites[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1270-1280. DOI: 10.13801/j.cnki.fhclxb.20230818.002
    [3]LI Ke, ZHENG Jian, ZHI Jianzhuang, DU Yongqiang, CHEN Jun. Correlation between macroscopic microscopic aging properties and lifetime prediction of hydroxyl-terminated polybutadiene inhibitor[J]. Acta Materiae Compositae Sinica, 2019, 36(5): 1327-1334. DOI: 10.13801/j.cnki.fhclxb.20180622.001
    [4]HOU Ruigang, SHANG Qidong, LI Dasheng. Durability of glass fiber/bromide epoxy vinylester composites exposed to accelerated aging condition of mixed acid medium[J]. Acta Materiae Compositae Sinica, 2017, 34(6): 1212-1220. DOI: 10.13801/j.cnki.fhclxb.20160831.001
    [5]ZHANG Han, CHEN Minfang. Preparation and accelerated-aging properties of barium sulfate nanoparticles/polyethylene composites[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 27-31. DOI: 10.13801/j.cnki.fhclxb.20140502.001
    [6]SUN Yan, WANG Dengxia, LIU Yaping, LI Hui. Correlation of accelerated aging and natural aging of glass fiber reinforced bromide epoxy vinyl ester composites[J]. Acta Materiae Compositae Sinica, 2014, 31(4): 916-924.
    [7]HOU Renluan, HE Chunxia, XUE Jiao, YU Min, DOU Chuanchuan. UV accelerated aging properties of wheat straw/PP wood plastic composite[J]. Acta Materiae Compositae Sinica, 2013, 30(5): 86-93.
    [8]Ultraviolet aging of ARMOS fiber[J]. Acta Materiae Compositae Sinica, 2009, 26(2): 107-112.
    [9]XU Feng-he, LI Xiao-jun, CHEN Xin-wen. THE DETERMINATION OF ATMOSPHERIC ENVIRONMENT EQUIVALENCE IN LIFE-PREDICTION TECHNOLOGY OF COMPOSITES AGING[J]. Acta Materiae Compositae Sinica, 2001, 18(2): 93-96.
    [10]ZHANG Xin-ping, YU Si-rong, HE Zhen-ming. NUMERICAL ANALYSIS OF TEMPERATURE DISTRIBUTION OF METAL SOLIDIFICATION PROCESS IN CENTRIFUGAL ACCELERATION FIELD[J]. Acta Materiae Compositae Sinica, 2001, 18(2): 75-80.
  • Cited by

    Periodical cited type(7)

    1. 刘瑜,盛德星,王辉,王玲,李茜,胡涛,李永. 紫外-冷凝老化对碳纤维/环氧树脂复合材料性能的影响. 装备环境工程. 2025(01): 196-202 .
    2. 肖瀚瑶,张勇,王安东,樊伟杰. SO_2盐雾与冲击载荷交替作用下AerMet100钢损伤研究. 装备环境工程. 2025(02): 1-11 .
    3. 秦国锋,秦旺招,糜沛纹,李铭,范秋寒. 复合材料在湿-热-载荷作用下的加速老化与自然老化研究综述. 交通运输工程学报. 2024(05): 173-194 .
    4. 张柱柱,陈跃良,姚念奎,卞贵学,张勇,张杨广. 冲击载荷作用下38CrMoAl渗氮钢损伤机理和耐腐蚀性能. 航空学报. 2021(05): 199-210 .
    5. 王安东,卞贵学,张勇,陈跃良,张柱柱,张杨广. 海洋环境下G814/3233复合材料的老化机理及加速老化与自然老化的相关性. 航空学报. 2021(05): 250-262 .
    6. 张勇,王安东,陈跃良,樊伟杰,马瑞民. CF8611/AC531复合材料的实验室加速老化行为研究. 装备环境工程. 2020(05): 116-121 .
    7. 高超干,周储伟. 复合材料环境当量等效加速老化试验方法. 工程塑料应用. 2020(08): 103-107+117 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (1299) PDF downloads (312) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return