TAO Jibai, ZHU Dalei, DONG Fenglu, et al. Research on lightweight composites of stent for spacecrafts[J]. Acta Materiae Compositae Sinica, 2016, 33(5): 1020-1025. DOI: 10.13801/j.cnki.fhclxb.20151225.004
Citation: TAO Jibai, ZHU Dalei, DONG Fenglu, et al. Research on lightweight composites of stent for spacecrafts[J]. Acta Materiae Compositae Sinica, 2016, 33(5): 1020-1025. DOI: 10.13801/j.cnki.fhclxb.20151225.004

Research on lightweight composites of stent for spacecrafts

More Information
  • Received Date: October 26, 2015
  • Revised Date: November 11, 2015
  • Stent is a very important part of spacecraft final assembly, which is founded by metal with heavy mass and low success. High dimension stability of stent is required urgently within intricate space environment. In order to improve the structural stiffness and abate the mass, a representative stent was selected to perform lightweight research. Based on the performance parameters of carbon fiber composite and boundary conditions, the finite element model was established and simulation analysis was performed firstly. Then the manufacture technology of composite stent was created and a composite stent was achieved. Finally, the testing scheme was made. The mechanical property comparison with metal and carbon fiber composite stent was worked out by evaluating the response of sine and random vibration. The result indicates that carbon fiber composite stent behaves better mechanical performance with lighter mass.
  • Related Articles

    [1]GUAN Hongbo, ZHANG Jiawang, YU Jitao, WANG Keling, PAN Leiyang. Stress-strain relationship analysis model of coal gangue ceramsite lightweight aggregate concrete confined by CFRP[J]. Acta Materiae Compositae Sinica.
    [2]YANG Jifei, LIU Shan, FAN Qiao, HE Lulu, HE Min. Research progress of lightweight polymer electromagnetic shielding materials[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3785-3794. DOI: 10.13801/j.cnki.fhclxb.20230119.002
    [3]XIONG Jian, LI Zhibin, LIU Huibin, FENG Lina, ZHAO Yunpeng, MENG Fanyi. Advances in aerospace lightweight composite shell structure[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1629-1650. DOI: 10.13801/j.cnki.fhclxb.20210107.002
    [4]YU Zhenpeng, HUANG Qiao, ZHAO Zhiqing, XIE Xinghua. Mechanical property of self-compacting lightweight aggregate concrete under combined compression-shear stress[J]. Acta Materiae Compositae Sinica, 2019, 36(8): 1984-1994. DOI: 10.13801/j.cnki.fhclxb.20181030.002
    [5]SUN Xue, YU Zhenpeng, XIE Xinghua, ZHAO Zhiqing, LU Bin. Mechanical properties of self-compacting lightweight aggregate concrete under biaxial loading[J]. Acta Materiae Compositae Sinica, 2019, 36(4): 993-1000. DOI: 10.13801/j.cnki.fhclxb.20180619.001
    [6]LIANG Sheng, CUI Hongzhi, XU Danyue. Properties of nano-SiO2 modified lightweight aggregate concrete[J]. Acta Materiae Compositae Sinica, 2019, 36(2): 498-505. DOI: 10.13801/j.cnki.fhclxb.20180330.001
    [7]MEI Lifang, XU Guangli. Preparation and mechanical properties of fiber expanded polystyrene particle lightweight soil[J]. Acta Materiae Compositae Sinica, 2016, 33(10): 2355-2362. DOI: 10.13801/j.cnki.fhclxb.20160621.001
    [8]LAI Changliang, LIU Chuang, WANG Junbiao. Fabrication and mechanical property test of IsoTruss ultra-lightweight composite structures[J]. Acta Materiae Compositae Sinica, 2014, 31(2): 375-382.
    [9]LIU Qiang, MA Xiaokang, ZONG Zhijian. Properties of twill-weave carbon fabric/epoxy composites and its application on light-weight design for electric vehicles[J]. Acta Materiae Compositae Sinica, 2011, 28(5): 83-88.
    [10]Fabrication and flexural characteristics of ultra-lightweight integral composite truss structure[J]. Acta Materiae Compositae Sinica, 2009, 26(3): 1-6.
  • Cited by

    Periodical cited type(16)

    1. 喻海良,罗开广. 高熵合金颗粒增强铝基复合材料研究进展. 材料与冶金学报. 2024(05): 411-426 .
    2. 陈雪,朱龙宇,薛钦洋,王柯翔,韩志林,罗楚养. 防空导弹用树脂基复合材料研究进展. 空天防御. 2024(06): 76-95 .
    3. 张峻滔,王亚震,李晖,马心旗,宗文波,籍天戚,吴海宏. 碳纤维复合材料结构锂离子电池研究综述. 复合材料学报. 2023(03): 1263-1273 . 本站查看
    4. 刘子仙,许文彬,汤亮,傅质彬,马志飞,兰付明,钱志源,姚刚. 大型对日定向装置大开口复合材料主承力架传力设计及验证. 上海航天(中英文). 2023(05): 123-128 .
    5. 马森,赵启林. 复合材料变截面压杆变形性能研究. 宇航材料工艺. 2023(06): 26-31 .
    6. 姚双,陈静,徐强,罗盼,董宇晨,于鑫. 多面体异型蜂窝夹层结构板整体成型技术研究. 纤维复合材料. 2022(03): 92-95 .
    7. 马森,赵启林,柯敏勇,施丽铭,穆思奇. 基于分区域优化模型的复合材料纺锤杆结构优化设计. 复合材料科学与工程. 2021(01): 13-18 .
    8. 蒋贵刚,周占伟,郭晓勇,陈爱姣. 多型面复合材料支架成型技术. 宇航材料工艺. 2020(04): 55-58 .
    9. 施云高,杨爽,陈红,高思煜. 基于有限元法的轻量化支架力学分析. 机械制造. 2020(08): 10-13+57 .
    10. 宋和谦,王玉凤,王悦博,张高龙,孙剑飞,曹福洋,宁志良. 大型镁合金铸件的充型模拟及缺陷分析. 特种铸造及有色合金. 2020(06): 587-590 .
    11. 帅亮,余欢,徐志锋,蔡长春,王振军,胡银生. 三维五向C_f/Al复合材料不同温度下的轴向弯曲变形力学行为. 材料导报. 2020(20): 20137-20142 .
    12. 吕鑫,杨永泰,曾文浩,徐大伟. 基于增材制造的六自由度串联机械臂轻量化设计. 机械设计与制造工程. 2020(12): 5-10 .
    13. 周照耀,秦杰,肖志瑜. 不锈钢纤维/191UPR复合材料力学性能研究. 机械设计与制造. 2019(01): 66-69+73 .
    14. 石文静,高峰,柴洪友. 复合材料在航天器结构中的应用与展望. 宇航材料工艺. 2019(04): 1-6 .
    15. 潘自民,章泉源,吴晟,曹旭民,张茂. 某星载大口径天线子系统的力学仿真分析. 电子机械工程. 2019(06): 51-56 .
    16. 董晓阳,詹光亮,徐云研,翟东坤,陈浩然,郭金海. 超薄高模量织物研制及其在星载反射器上的应用. 玻璃钢/复合材料. 2018(05): 84-89 .

    Other cited types(16)

Catalog

    Article Metrics

    Article views (1569) PDF downloads (522) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return