CAO Ningning, ZHENG Yuying, LIU Yanglong, et al. Fabrication and properties of stack-like functionalized graphene nanoribbons/TPU composite films[J]. Acta Materiae Compositae Sinica, 2016, 33(7): 1371-1381. DOI: 10.13801/j.cnki.fhclxb.20150921.004
Citation: CAO Ningning, ZHENG Yuying, LIU Yanglong, et al. Fabrication and properties of stack-like functionalized graphene nanoribbons/TPU composite films[J]. Acta Materiae Compositae Sinica, 2016, 33(7): 1371-1381. DOI: 10.13801/j.cnki.fhclxb.20150921.004

Fabrication and properties of stack-like functionalized graphene nanoribbons/TPU composite films

More Information
  • Received Date: June 17, 2015
  • Revised Date: September 09, 2015
  • Accepted Date: September 09, 2015
  • The stack-like functionalized graphene nanoribbons (SF-GNRs)/thermoplastic polyurethane (TPU) composite films were obtained by solution coating film method on a coating machine. FTIR, XRD, XPS, TEM and FE-SEM were used to characterize the structure of SF-GNRs. Meanwhile, by means of oxygen transmission rate, volume resistivity test, and the observation of surface morphology, we studied the effect of SF-GNRs with different mass fractions on the barrier and antistatic properties of TPU composite films. The results show that the SF-GNRs with high surface area are evenly dispersed within TPU matrix. As a result, when the mass fraction of SF-GNRs is 1.0%, the oxygen transmission rate of SF-GNRs/TPU composite films reduces by 67.76%, compared with that of the neat TPU film. Barrier property has obvious improvement. In addition, as SF-GNRs mass fraction reaches to 1.0%-1.5%, SF-GNRs/TPU composite films appear electrical percolation behavior which exhibit the excellent room temperature conductivity.
  • Related Articles

    [1]LI Ke, WANG Shaohua, ZHENG Shuning, FAN Jiajun, ZHU Juntao. Numerical simulation and theoretical analysis of flexural strengthening of RC beams with high-strength steel strand mesh/ECC[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 6077-6091. DOI: 10.13801/j.cnki.fhclxb.20240306.001
    [2]LI Ke, CHEN Xiang, FAN Jiajun, NIU Zili, ZHANG Zhe. Experiment on RC beams strengthened with high-strength steel strand meshes and ECC under secondary load[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4670-4681. DOI: 10.13801/j.cnki.fhclxb.20221102.003
    [3]ZHU Juntao, LIU Yawen, WANG Juan, LI Ke. Experimental on bond properties of grooved interface between high-strength steel wire mesh reinforced ECC and concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2913-2925. DOI: 10.13801/j.cnki.fhclxb.20220721.001
    [4]HUI Yingxin, WANG Wenwei, ZHU Zhongfeng. Cyclic compression behavior of FRP-ECC confined concrete cylinder[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5586-5598. DOI: 10.13801/j.cnki.fhclxb.20220516.004
    [5]LI Ke, ZHAO Jiali, LI Zhiqiang, ZHU Juntao. Experiment on non-damaged RC beams strengthened by high-strength steel wire strand meshes reinforced ECC in bending[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3428-3440. DOI: 10.13801/j.cnki.fhclxb.20210816.004
    [6]WANG Xinling, LI Yunpu, LIMIAO Haofu, FAN Jiajun. Compressive behavior of RC short columns strengthened with high-strength stainless steel wire strand mesh and ECC[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2308-2317. DOI: 10.13801/j.cnki.fhclxb.20210804.001
    [7]WANG Xinling, WEI Yaoxin, FAN Jianwei, ZHU Juntao. Experimental study on compressive performance of new composite material “concrete confined with high-strength steel stranded wire meshes/ECC”[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3904-3911. DOI: 10.13801/j.cnki.fhclxb.20201225.002
    [8]WANG Xinling, CHEN Yongjie, QIAN Wenwen, LI Ke, ZHU Juntao. Experiment on bending performance of engineered cementitious composites reinforced by high-strength stainless steel wire strand mesh[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1292-1301. DOI: 10.13801/j.cnki.fhclxb.20200805.001
    [9]WANG Xinling, YANG Guanghua, QIAN Wenwen, LI Ke, ZHU Juntao. Tensile stress-strain relationship of engineered cementitious composites reinforced by high-strength stainless steel wire mesh[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3220-3228. DOI: 10.13801/j.cnki.fhclxb.20200428.002
    [10]ZHU Juntao, ZHAO Yalou, LI Yi, WANG Xinling. Experiment on bonding and anchoring performance between high-strength stainless steel wire mesh and engineered cementitious composites[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1731-1742. DOI: 10.13801/j.cnki.fhclxb.20191010.001
  • Cited by

    Periodical cited type(10)

    1. 徐建蓉,梅启林,姜端洋,蔡永祺,刘备,丁国民. Ca~(2+)辅助增强CNT/PEEK界面结合及其导电复合材料制备与性能. 复合材料学报. 2025(01): 283-298 . 本站查看
    2. 赵宏婷,王鹤峰,罗居杰,贾宜委,何艳骄,树学峰. N, S共掺杂碳/PVDF纳米复合膜的电磁屏蔽效能及其力学性能. 复合材料学报. 2025(02): 845-853 . 本站查看
    3. 朱再斌,凌辉,杨小平,李刚,王超. 碳纳米管膜层间增强增刚碳纤维增强树脂基复合材料的压缩强度与导热性能. 复合材料学报. 2024(03): 1235-1248 . 本站查看
    4. 施水娟,卞达,李佳红,王恺璇,徐鹏程,赵鹏,赵永武,陈义. 不同注射温度和热处理对聚醚醚酮/碳纤维复合材料摩擦磨损性能的影响. 塑料科技. 2024(04): 23-27 .
    5. 周杰,何相明,耿闻,李闯,李伟. 碳纳米管改性热固性树脂的研究进展. 广州化工. 2024(14): 11-13 .
    6. 王文波,宋彦平,李年,王振洋. 激光诱导石墨烯的纳米银颗粒原位修饰及其导电性能调控. 复合材料学报. 2024(08): 4124-4133 . 本站查看
    7. 李纪康,刘雁雁,王维超,郑振荣. 纳米材料在防护纺织品中的应用研究. 天津纺织科技. 2023(03): 1-5 .
    8. 李亚洲 ,杨强 ,彭瑞龙 ,王富 ,李涤尘 . 聚醚醚酮及其复合材料激光粉末床熔融成形的研究现状与展望. 精密成形工程. 2023(11): 46-60 .
    9. 任天翔,滕晓波,黄兴,马金星,赵德方,占海华. 聚醚醚酮的改性及应用研究进展. 塑料科技. 2022(09): 123-128 .
    10. 杨琴,汪莹,刘逸众. 热塑性树脂聚醚醚酮(PEEK)改性研究进展. 长沙航空职业技术学院学报. 2022(04): 33-37 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (1226) PDF downloads (1256) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return