XING Yuxiong, ZHANG Haiyan, LIN Jin, et al. Preparation and properties of carbon coated cobalt nanoparticles/polydimethylsiloxane composite thermal interface materials[J]. Acta Materiae Compositae Sinica, 2015, 32(6): 1590-1595. DOI: 10.13801/j.cnki.fhclxb.20150327.001
Citation: XING Yuxiong, ZHANG Haiyan, LIN Jin, et al. Preparation and properties of carbon coated cobalt nanoparticles/polydimethylsiloxane composite thermal interface materials[J]. Acta Materiae Compositae Sinica, 2015, 32(6): 1590-1595. DOI: 10.13801/j.cnki.fhclxb.20150327.001

Preparation and properties of carbon coated cobalt nanoparticles/polydimethylsiloxane composite thermal interface materials

More Information
  • Received Date: December 15, 2014
  • In order to prepare the nanoparticles filling silicone composites with favorable thermal conductivity, thermal stability, electrical conductivity and flexibility, vinyl terminated polydimethylsiloxane (PDMS) was used as matrix material and carbon coated cobalt nanoparticles (C@Co) was used as filler, C@Co/PDMS composite thermal interface materials were prepared by ground co-blend method firstly. Then, TEM, XRD, Raman, and SEM were employed to investigate the microstructure, phase, degree of graphitization and dispersibility of C@Co. Finally, the effects of C@Co content on thermal conductivity, thermal stability, electrical conductivity and flexibility of composite thermal interface materials were investigated. The results show that the thermal conductivity of the composite thermal interface materials increases with the C@Co content increasing, when the C@Co content is 24wt%, the thermal conductivity of the composite reaches the maximum 1.64 W/(m·K), which is 10.7 times higher than that of neat PDMS. TG analysis indicates that after the addition of 24wt% C@Co, the initial decomposition temperature and final decomposition temperature of composites increase about 70 ℃ and 80 ℃ comparing to that of the neat PDMS respectively, accounting for C@Co can enhance the thermal stability of the composites. With the C@Co content increasing, the electrical conductivity of the composite thermal interface materials increases nonlinearly, and the percolation threshold value of fitting trial and error calculation is 10wt%, which means that when the C@Co content is less than 10wt%, the insulativity of composite is favorable; but when filled with 24wt% C@Co, the electrical conductivity of composite is 9.38×10-3 S·m-1. The hardness of composites is moderate, which is in the range of 17.6-26.8 HA and indicates that the flexibility of the composite is preferable. Therefore, 24wt% C@Co/PDMS composite can not only meet the basic requirements of the electrical properties of thermal interface materials, but also have favorable thermal conductivity, thermal stability and flexibility.
  • Related Articles

    [1]ZHANG Zhengwei, LI Hui, LI Zelin, SUN Guowei, CUI Hongbo, DENG Yichen. Finite element modeling analysis and verification of fiber-reinforced origami sandwich plates with shear-hardening materials under high velocity impact[J]. Acta Materiae Compositae Sinica.
    [2]TAN Huancheng, XU Shanying, HUANG Xiong, GUAN Yupu, CHEN Wei. Macro-scale finite element model for impact damage simulation and experimental verification of three-dimensional four-directional braided composites[J]. Acta Materiae Compositae Sinica, 2018, 35(5): 1139-1148. DOI: 10.13801/j.cnki.fhclxb.20170821.002
    [3]WEN Quan, GUO Dongming, GAO Hang, ZHAO Dong. Comprehensive evaluation method for carbon/epoxy composite hole-making damages[J]. Acta Materiae Compositae Sinica, 2016, 33(2): 265-272. DOI: 10.13801/j.cnki.fhclxb.20151014.001
    [4]LI Jia, SHI Fenghui, LYU Jing, ZHANG Baoyan. Characterization and evaluation of electric-arc-produced graphene material[J]. Acta Materiae Compositae Sinica, 2015, 32(6): 1658-1662. DOI: 10.13801/j.cnki.fhclxb.20150323.001
    [5]LUO Chuyang, WU Cuisheng, WEI Zhongwei, HE Hui, CAI Peipei, ZHAO Rong. Manufacturing and testing verification for high temperature composite rudder[J]. Acta Materiae Compositae Sinica, 2014, 31(5): 1312-1320.
    [6]JIANG Tian, XU Jifeng, LIU Weiping, YE Jinrui, JIA Lijie, ZHANG Boming. Simulation and verification of cure-induced deformation by stages for integrated composite structure[J]. Acta Materiae Compositae Sinica, 2013, 30(5): 61-66.
    [7]QING Yan, WU Yiqiang, QIN Zhiyong, YAO Chunhua, WANG Min, LUO Sha. Preparation and performance evaluation of SiO2/poplar wood composites[J]. Acta Materiae Compositae Sinica, 2011, 28(6): 125-130. DOI: CNKI:11-1801/TB.20110720.1425.038
    [8]Evaluation method for technology maturity of composite aircraft structure[J]. Acta Materiae Compositae Sinica, 2010, 27(3): 150-154.
    [9]GUO Cheng, GUO Shengwu, CHENG Yu, ZHANG Xingong, SHI Dongcai. TENSILE MECHANICAL PROPERTIES AND ITS EVALUATION OF ALUMINIUM ALLOY MATRIX GRADIENT COMPOSITESREINFORCED WITH SiC PARTICLES[J]. Acta Materiae Compositae Sinica, 2003, 20(4): 23-28.
    [10]YAN Ying, LOU Chang, CHENG Chuan-xian, ZHANG Yi-ning, YANG Xu. MICROMECHANICAL ANALYSIS AND EXPERIMENTAL EVALUATION OF THE PROPERTY OF WOVEN COMPOSITE MATERIALS[J]. Acta Materiae Compositae Sinica, 2001, 18(2): 109-113.
  • Cited by

    Periodical cited type(10)

    1. 翟兆阳,李欣欣,张延超,刘忠明,杜春华,张华明. 连续光纤激光切割金属薄壁材料工艺研究. 红外与激光工程. 2024(02): 33-43 .
    2. 陶洋,李存静,逄增媛,张典堂. 展宽布/网胎针刺C/C复合材料制备及力学性能. 复合材料学报. 2024(04): 1934-1944 . 本站查看
    3. 董志刚,王中旺,冉乙川,鲍岩,康仁科. 碳纤维增强陶瓷基复合材料超声振动辅助铣削加工技术的研究进展. 机械工程学报. 2024(09): 26-56 .
    4. 席翔,李海龙,陈友元,裴景奇,廖城坤,薛琳,储洪强,冉千平. 碳纤维增强碳基复合材料的介电性能对应力的自感知. 高分子材料科学与工程. 2024(05): 115-124 .
    5. 钱奇伟,张昕,杨贞军,沈镇,校金友. 基于CT图像深度学习的三维编织C/C复合材料微观组分与缺陷智能识别. 复合材料学报. 2024(07): 3536-3543 . 本站查看
    6. 翟兆阳,李欣欣,张延超,刘忠明,杜春华,张华明. 基于正交试验的金属薄壁材料激光切割工艺优化. 中国机械工程. 2024(07): 1279-1289 .
    7. 何金玲. 纤维复材浆料流变性能分析及矿混匀质量应用研究. 粘接. 2024(09): 87-90 .
    8. 姚先龙. 碳基复合材料的应用及相关制备方法. 信息记录材料. 2023(01): 36-38 .
    9. 石磊,罗浩,罗瑞盈. 胶层厚度对C/C复合材料剪切粘接性能的影响. 炭素技术. 2023(04): 22-26 .
    10. 刘科众,陈舟,王泽鹏,韩保恒. C/C复合材料增密过程孔隙结构及演化研究. 机械设计与制造工程. 2022(10): 33-36 .

    Other cited types(10)

Catalog

    Article Metrics

    Article views (1141) PDF downloads (443) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return