氧化石墨烯/海藻酸钙水凝胶复合膜对水中Cd(II)的吸附

白成玲, 王磊, 朱振亚, 王旭东

白成玲, 王磊, 朱振亚, 等. 氧化石墨烯/海藻酸钙水凝胶复合膜对水中Cd(II)的吸附[J]. 复合材料学报, 2020, 37(6): 1458-1465. DOI: 10.13801/j.cnki.fhclxb.20191016.001
引用本文: 白成玲, 王磊, 朱振亚, 等. 氧化石墨烯/海藻酸钙水凝胶复合膜对水中Cd(II)的吸附[J]. 复合材料学报, 2020, 37(6): 1458-1465. DOI: 10.13801/j.cnki.fhclxb.20191016.001
BAI Chengling, WANG Lei, ZHU Zhenya, et al. Adsorption of Cd(II) in water by graphene oxide/calcium alginate hydrogel composite membrane[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1458-1465. DOI: 10.13801/j.cnki.fhclxb.20191016.001
Citation: BAI Chengling, WANG Lei, ZHU Zhenya, et al. Adsorption of Cd(II) in water by graphene oxide/calcium alginate hydrogel composite membrane[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1458-1465. DOI: 10.13801/j.cnki.fhclxb.20191016.001

氧化石墨烯/海藻酸钙水凝胶复合膜对水中Cd(II)的吸附

基金项目: 陕西省重点科技创新团队计划(2017KCT-19-01); 陕西省重点产业链(群)项目(2017ZDCXL-GY-07-03); 西安市科技计划项目(201805033YD11CG17(3)); 陕西省技术创新引导专项(2018HJCG-18); 陕西省自然科学基础研究计划课题(2017JM5110)
详细信息
    通讯作者:

    朱振亚,博士,讲师,研究方向为膜法水处理 E-mail:dgjj1982@163.com

  • 中图分类号: TB332

Adsorption of Cd(II) in water by graphene oxide/calcium alginate hydrogel composite membrane

  • 摘要: 将氧化石墨烯(GO)、致孔剂与海藻酸钠共混后与CaCl2交联制备的GO/海藻酸钙(CA)水凝胶复合膜作为含重金属废水的吸附材料。采用SEM和TEM表征了复合膜的表面形貌及透射性能,且分析了GO的加入对复合膜的力学性能、平均孔径、水通量及表面官能团的影响。为探究GO/CA水凝胶复合膜的吸附性能,考察了其吸附Cd(II)的影响因素:pH(6~7)值、初始离子浓度、接触时间、温度(三者均正相关)。用FTIR、XPS在吸附前后对复合膜进行了表征;引入了吸附动力学和等温线模型分析其吸附机制。探究结果表明GO的加入提高了复合膜的力学性能、平均孔径及水通量;吸附过程遵循Langmuir等温线,属于单层吸附,拟合得到的最大吸附量为173.61 mg/g;伪一级和伪二级吸附动力学分别在低浓度和高浓度时能较好地描述吸附过程的动力学行为;吸附机制主要为物理作用力吸附和离子交换。经过5个连续的吸附-解吸循环证明了GO/CA水凝胶复合膜的可重复利用性。
    Abstract: The crosslinked graphene oxide (GO)/calcium alginate (CA) hydrogel composite membranes, prepared by blending GO, porogenas as well as Na alginate hydrogel (SA), cross-linking with CaCl2, were used as adsorbent for wastewater containing heavy metal ions. SEM and TEM were used to characterize the composite membranes. The influences of GO on the mechanical properties, average pore diameter, water flux and surface functional groups of the composite membrane were analyzed. To explore the adsorption performance of GO/CA hydrogel composite membrane, the influencing factors of Cd(II) adsorption including pH (6-7), initial ion concentration, contact time and temperature (all positively correlated) were investigated. The composite membranes before and after adsorption of Cd(II) were characterized by FTIR and XPS; The adsorption kinetics and adsorption isotherm model were introduced to analyze the adsorption mechanism. The results show that the introduction of GO improves the mechanical properties, average pore diameter and water flux of the composite membrane. The adsorption process follows the Langmuir isotherm, belonging to the monolayer adsorption. The maximum adsorption capacity is 173.61 mg/g. The pseudo-first and pseudo-second adsorption kinetics could describe the adsorption process at low and high concentration, respectively. The adsorption mechanism is mainly physical force adsorption and ion exchange. The recyclability of the GO/CA hydrogel composite membranes was demonstrated by five successive adsorption-desorption cycles.
  • 图  1   氧化石墨烯/海藻酸钙水凝胶( GO/CA)复合膜的表面形貌(a)、透视特征(b)及官能团的变化(c)

    Figure  1.   Surface morphology (a), perspective characteristics (b) and functional groups (c) of graphene oxide/calcium alginate hydrogel( GO/CA) hydrogel composite membrane

    图  2   GO (a)、pH ((b)、(c))、初始浓度(d)、温度(e)和循环次数(f)对GO/CA 膜吸附容量的影响

    Figure  2.   Effect of GO (a), pH ((b), (c)), initial concentration (d), temperature (e), cycle times (f) on adsorption capacity of GO/CA hydrogel composite membrane

    图  3   GO/CA水凝复合膜吸附动力学((a)~(d))及等温线((e)、(f))模型拟合图

    Figure  3.   Adsorption kinetics((a)-(d))and isotherm ((e), (f)) model fitting diagram of GO/CA hydrogel composite membrane

    图  4   GO/CA水凝胶复合膜的FTIR图谱

    Figure  4.   FTIR spectra of GO/CA hydrogel composite membrane

    图  5   GO/CA水凝胶复合膜吸附Cd(II)的XPS能谱

    Figure  5.   XPS spectra of GO/CA hydrogel composite membrane adsorption of Cd(II)

    表  1   CA膜和GO/CA水凝复合膜的渗透性能

    Table  1   Permeability of CA membrane and GO/CA hydrogel composite membrane

    MembraneMean pore size/nmPoriness/%Water flux/(L·m-2h-1)
    CA10.686.514.7
    GO/CA12.690.118.1
    下载: 导出CSV

    表  2   CA膜和GO/CA水凝复合膜的力学性能

    Table  2   Mechanical properties of the CA membrane and GO/CA hydrogel composite membrane

    MembraneElongation at break/%Fracture energy/(kJ·m−2)Stress/MPa
    CA9534914
    GO/CA143651 725
    下载: 导出CSV

    表  3   Cd(II)的初始浓度C0不同时GO/CA水凝复合膜吸附性能的动力学模型拟合参数

    Table  3   Kinetic model parameters of GO/CA hydrogel composite membrane adsorption at different initial concentration C0 of Cd(II)

    C0/(mg·L−1)Pseudo-first order kinetic modelPseudo-second order kinetic modelElovich model
    k1/min−1Qe/(mg·g−1)R2k2/min−1Qe/(mg·g−1)R2ABR2
    100.1530 51.370.99990.0826 57.280.987434.53−4.4970.964 1
    400.3131140.00.99190.0116147.50.9993113.7−7.5790.9785
    800.4497211.90.98040.0066224.10.9993135.3−22.170.9714
    Notes: C0—Initial concentration of Cd(II); R2—Goodness; Qe—Adsorption capacity at adsorption equilibrium; k1, k2 and A—Constant of kinetic models, respectively; B—Coefficient of elovich kinetic models.
    下载: 导出CSV

    表  4   GO/CA水凝胶复合膜吸附Cd(II)的吸附等温线模型参数

    Table  4   Isothermal adsorption model parameters of Cd(II) adsorbed by GO/CA hydrogel composite membrane

    Temper-
    ature/K
    Freundlich isothermLangmuir isotherm
    kfNR2klQm/(mg·g−1)R2
    28813.811.7870.94450.176685.400.9914
    30347.992.7700.96180.2168161.80.9952
    31847.673.1470.95890.3146173.60.9981
    Notes: kf—Capacity factor of Freundlich; N—Liquid phase adsorption isotherm index of Freundlich; k1—Langmuir constant of affinity point; Qm—Adsorption capacity of single layer.
    下载: 导出CSV
  • [1]

    SUN X F, HAO Y W, GAO Y Y, et al. Superadsor-bent hydrogel based on lignin and montmorillonite for Cu(II) ions removal from aqueous solution[J]. International Journal of Biological Macromolecules,2019,127:511-519. DOI: 10.1016/j.ijbiomac.2019.01.058

    [2]

    YU Z Z, DANG Q F, LIU C S, et al. Preparation and characterization of poly(maleic acid)-grafted cross-linked chitosan microspheres for Cd(II) adsorption[J]. Carbohydrate Polymers,2017,172:28-39. DOI: 10.1016/j.carbpol.2017.05.039

    [3]

    PENG H B, GAO P, CHU G, et al. Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars[J]. Environmental Pollution,2017,229:846-853. DOI: 10.1016/j.envpol.2017.07.004

    [4]

    SHARMA A, LEE B K. Cd(II) removal and recovery enhancement by using acrylamide-titanium nanocomposite as an adsorbent[J]. Applied Surface Science,2014,313(15):624-632.

    [5]

    CUI L, WANG Y G, GAO L, et al. EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: Adsorption mechanism and separation property[J]. Chemical Engineering Journal,2015,281:1-10. DOI: 10.1016/j.cej.2015.06.043

    [6]

    SASMAL D, KOLYA H, TRIPATHY T, et al. Amylopecting-poly(methylacrylate-co-sodium acrylate): An efficient Cd(II) binder[J]. International Journal of Biological Macromolecules,2016,91:934-945. DOI: 10.1016/j.ijbiomac.2016.06.022

    [7]

    AHMAD Z, GAO B, MOSA A, et al. Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass[J]. Journal of Cleaner Production,2017,180:437-449.

    [8]

    SHAN Z B, ZAHNG L W, ZHAO X Y, et al. Removal of Pb(II), Cd(II) and Hg(II) from aqueous solution by mercapto modified coal gangue[J]. Journal of Environmental Management,2019,231:391-396.

    [9]

    KARTHIK R, MEENAKSHI S. Removal of Cr(VI) ions by adsorption onto sodiumalginate-polyaniline nanofibers[J]. International Journal of Biological Macromolecules,2015,72:711-717. DOI: 10.1016/j.ijbiomac.2014.09.023

    [10]

    LIM J Y, MUBARAK N M, ABDULLAH E C, et al. Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals: A review[J]. Journal of Industrial and Engineering Chemistry,2018,66:29-44. DOI: 10.1016/j.jiec.2018.05.028

    [11]

    CHEN J H, LIU Q L, HU S R, et al. Adsorption mechanism of Cu(II) ions from aqueous solution by glutaraldehydecrosslinkedhumic acid-immobilized sodium alginate porous membrane adsorbent[J]. Chemical Engineering Journal,2011,173:511-519. DOI: 10.1016/j.cej.2011.08.023

    [12]

    ZHAO K Y, ZHANG X X, WEI J F, et al. Calcium alginate hydrogel filtration membrane with excellent anti-fouling property and controlled separation performance[J]. Journal of Membrane Science,2015,492:536-546. DOI: 10.1016/j.memsci.2015.05.075

    [13] 朱振亚, 王磊, 姜家良, 等. 纳米SiO2-氧化石墨烯/聚偏氟乙烯杂化膜的制备及特性[J]. 复合材料学报, 2018, 35(4):785-792.

    ZHU Z Y, WANG L, JIANG J L, et al. Preparation and properties of nano SiO2-GO/polyvinylidene fluoride hybrid membrane[J]. Journal of Composite Materials,2018,35(4):785-792(in Chinese).

    [14]

    LODEIRO P, FUENTES A, HERRERO R, et al. CrIII binding by surface polymers in natural biomass: The role of carboxylic groups[J]. Environmental Chemistry,2008,5(5):355-365. DOI: 10.1071/EN08035

    [15]

    CHEN J H, LI G P, LIU Q L, et al. Cr(III) ionic imprinted polyvinyl alcohol/sodium alginate (PVA/SA) porous composite membranes for selective adsorption of Cr(III) ions[J]. Chemical Engneering Journal,2010,165(2):465-473. DOI: 10.1016/j.cej.2010.09.034

    [16]

    NAG S, MONDAL A, ROY D N, et al. Sustainable bioremediation of Cd(II) from aqueous solution using natural waste materials: Kinetics, equilibrium, thermodynamics, toxicity studies and GA-ANN hybrid modeling[J]. Environmental Technology & Innovation,2018,11:83-104.

    [17] 谢水波, 罗景阳, 刘清, 等. 羟乙基纤维素/海藻酸钠复合膜对六价铀的吸附性能及吸附机制[J]. 复合材料学报, 2015, 32(1):268-275.

    XIE S B, LUO J Y, LIU Q, et al. Adsorption characteristics and mechanism of hydroxyethyl cellulose/sodium alginate blend films for uranium(VI)[J]. Acta Materiae Compo-sitae Sinica,2015,32(1):268-275(in Chinese).

    [18]

    DIVISEKARA T, NAVARATNE A N, ABEY-SEKARA A S K. Impact of a commercial glyphosate formulation on adsorption of Cd(II) and Pb(II) ions on paddy soil[J]. Chemosphere,2018,198:334-341. DOI: 10.1016/j.chemosphere.2018.01.155

    [19] 于长江, 王苗, 董心雨, 等. 海藻酸钙@Fe3O4/生物碳磁性复合材料的制备及其对Co (II)的吸附性能和机制[J]. 复合材料学报, 2018, 35(6):1549-1557.

    YU C J, WANG M, DONG X Y, et al. Preparation and characterization of calcium alginate@Fe3O4/biochar magnetic microsphere and its adsorption characteristics and mechanism for Co (II)[J]. Acta Materiae Compositae Sinica,2018,35(6):1549-1557(in Chinese).

    [20]

    ALGOTHMI W M, BANDARU N M, YU Y, et al. Alginate–graphene oxide hybrid gel beads: An efficient copper adsorbent material[J]. Journal of Colloid and Interface Science,2013,397:32-38. DOI: 10.1016/j.jcis.2013.01.051

  • 期刊类型引用(16)

    1. 薛丹,郭笑一,张浩田,李善建. 丙烯酰胺基互穿网络的制备及对Fe~(3+)的吸附. 工程塑料应用. 2025(01): 15-22 . 百度学术
    2. 张金梅,边亮,宋绵新,张琴,杨敬杰,聂嘉男,张娇,罗伟恢,解鑫,张鹏. 海藻酸钠-聚乙烯包覆贝得石复合材料(SA-Bd@PE)去除低浓度铀酰试验研究. 化工矿物与加工. 2024(03): 45-52 . 百度学术
    3. 代甜甜,刘晓南,张晓春,杨熙. 改性沸石/GA/CS膜的制备及Pb(Ⅱ)吸附性能研究. 现代塑料加工应用. 2024(04): 25-27+31 . 百度学术
    4. 李永宽,王曦,王醒,贾楠,李登新. UIO-66-NH_2/SA复合材料的制备及对含铅废水吸附性能的研究. 广东化工. 2023(15): 1-4 . 百度学术
    5. 李昕,杨早,钟欣茹,韩昊轩,庄绪宁,白建峰,董滨,徐祖信. 污泥超高温堆肥衍生胡敏酸对Pb~(2+)的结合机制. 化工进展. 2023(09): 4957-4966 . 百度学术
    6. 马培林,宋亚婷,李旭,刘志明. 复合水凝胶SA/AAm-Lgs的制备及其对Fe~(3+)的静/动态吸附. 生物质化学工程. 2023(05): 35-43 . 百度学术
    7. 刘锋,黄钦裕,陈燕舞. 大豆蛋白基多孔凝胶球对Pb(Ⅱ)的吸附研究. 黑龙江农业科学. 2023(11): 100-107 . 百度学术
    8. 邹成龙,徐志威,聂发辉,吴道,王佳琪. Fe_3O_4@SA/GO凝胶球的制备及对亚甲基蓝的吸附性能. 环境工程学报. 2022(01): 121-132 . 百度学术
    9. 郝军杰,郭成,高翔鹏,李明阳,龙红明. 硫脲/海藻酸钠对Cr(VI)的吸附和光催化还原协同去除机制. 复合材料学报. 2022(04): 1657-1666 . 本站查看
    10. 付秋平,张海润,石登红,娄杰,莫昌琍,罗军,严伟. ZIF-8@SA对Pb(Ⅱ)的吸附性能和机理研究. 化学试剂. 2022(05): 697-702 . 百度学术
    11. 付秋平,张海润,罗云,娄杰,石登红,莫昌琍,罗军,严伟. 海藻酸钠/聚乙烯亚胺复合材料对Pb(Ⅱ)的吸附性能研究. 化学试剂. 2022(10): 1457-1462 . 百度学术
    12. 狄婧,刘海霞,姜永强,郭金鑫,赵国虎. 聚吡咯/壳聚糖复合膜的制备及其对Cu(Ⅱ)和Cr(Ⅵ)吸附机制. 复合材料学报. 2021(01): 221-231 . 本站查看
    13. 郭成,高翔鹏,李明阳,郝军杰,龙红明,赵卓. 海藻酸钠基吸附材料去除水中重金属离子的研究进展. 过程工程学报. 2021(01): 3-17 . 百度学术
    14. 郭成,郝军杰,李明阳,龙红明,高翔鹏. 海藻酸钠/聚乙烯亚胺凝胶球的合成及对Cr(Ⅵ)的吸附性能和机制. 复合材料学报. 2021(07): 2140-2151 . 本站查看
    15. 张宏伟,谢鸿,肖欣荣,方志强. 不同氧化程度氧化石墨烯/聚乙烯醇气凝胶对亚甲基蓝的吸附. 复合材料学报. 2021(09): 2788-2795 . 本站查看
    16. 武鑫霞,曹占平,苏婷,李岚. Ce改性金属有机骨架材料对氟的吸附. 复合材料学报. 2020(10): 2636-2644 . 本站查看

    其他类型引用(9)

图(5)  /  表(4)
计量
  • 文章访问数:  1136
  • HTML全文浏览量:  199
  • PDF下载量:  73
  • 被引次数: 25
出版历程
  • 收稿日期:  2019-07-06
  • 录用日期:  2019-09-17
  • 网络出版日期:  2019-10-15
  • 刊出日期:  2020-06-14

目录

    /

    返回文章
    返回