留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高强度耐低温纳米纤维素/聚乙烯醇导电复合水凝胶的制备及其在柔性传感中的应用

胡魁 王映月 王昊昱 赵志鹏 刘凯 黄六莲 陈礼辉

胡魁, 王映月, 王昊昱, 等. 高强度耐低温纳米纤维素/聚乙烯醇导电复合水凝胶的制备及其在柔性传感中的应用[J]. 复合材料学报, 2022, 40(0): 1-11
引用本文: 胡魁, 王映月, 王昊昱, 等. 高强度耐低温纳米纤维素/聚乙烯醇导电复合水凝胶的制备及其在柔性传感中的应用[J]. 复合材料学报, 2022, 40(0): 1-11
Kui HU, Yingyue WANG, Haoyu WANG, Zhipeng ZHAO, Kai LIU, Liulian HUANG, Lihui CHEN. Preparation of high-strength and low-temperature-resistant nanocellulose/polyvinyl alcohol conductive composite hydrogel and its application in flexible sensing[J]. Acta Materiae Compositae Sinica.
Citation: Kui HU, Yingyue WANG, Haoyu WANG, Zhipeng ZHAO, Kai LIU, Liulian HUANG, Lihui CHEN. Preparation of high-strength and low-temperature-resistant nanocellulose/polyvinyl alcohol conductive composite hydrogel and its application in flexible sensing[J]. Acta Materiae Compositae Sinica.

高强度耐低温纳米纤维素/聚乙烯醇导电复合水凝胶的制备及其在柔性传感中的应用

基金项目: 国家自然科学基金面上项目 (32171733);福建省自然科学基金项目(2021J01102)
详细信息
    通讯作者:

    刘凯,博士,副教授,硕士生导师,研究方向为生物质复合材料 E-mail: liuk1103@fafu.edu.cn

  • 中图分类号: TB332;TQ427.7

Preparation of high-strength and low-temperature-resistant nanocellulose/polyvinyl alcohol conductive composite hydrogel and its application in flexible sensing

  • 摘要: 纳米纤维素具有大长径比、较高的弹性模量与比表面积以及丰富的表面官能团,是一种优良的纳米增强材料。首先以纳米纤维素(CNFs)为分散介质辅助分散MXene纳米片层,制备CNF-MXene纳米复合物,并通过FTIR与XPS分析CNFs与MXene的相互作用。以此复合物为增强填料,聚乙烯醇(PVA)为基底,制备CNF-MXene/PVA复合水凝胶,进一步通过氢氧化钾溶液处理,提高复合水凝胶的力学性能,并赋予复合水凝胶优异的离子导电性。该复合水凝胶表现出优异的力学性能,其拉伸强度与断裂伸长率分别达到255.9 kPa与1098.2%,还具有高电导率(2.38 S/m)、一定的抗冻性能与灵敏的应变/压力响应性。基于该复合水凝胶组装的应变/压力柔性传感器,由于具有极低的检测极限质量(100 mg)与极快的响应时间(225 ms),可以监控脉搏跳动与喉咙发声微小震动引起的压力变化。因此,该复合水凝胶基柔性传感器非常有希望应用于未来新一代可穿戴电子、人机交互等领域。

     

  • 图  1  (a) 纳米纤维素(CNFs)-MXene/聚乙烯醇(PVA)-KOH复合水凝胶制备流程图,(b)CNF-MXene/PVA-KOH复合水凝胶内部结构示意图,(c)、(d)分别是PVA和CNF-MXene/PVA-KOH水凝胶的横截面SEM图

    Figure  1.  (a) Preparation process of cellulose nanofibers (CNFs)-MXene/ PVA (polyvinyl alcohol)-KOH composite hydrogels. (b) Schematic diagram of the internal structure of the CNF-MXene/PVA-KOH composite hydrogels. SEM images of the cross-section of the PVA hydrogel (c) and the CNF-MXene/PVA-KOH composite hydrogel (d)

    图  2  (a) MXene及CNF-MXene复合物在水中静置不同时间后的对比照片;(b) CNFs、MXene与CNF-MXene复合物的FTIR图谱;(c)与(d)分别是CNF-MXene复合物的Ti 2p 与O 1s XPS图谱

    Figure  2.  (a) Photos of the MXene and CNF-MXene suspensions; (b) FTIR spectra of the CNFs, MXene, and CNF-MXene nanocomposites; XPS Ti 2p (c) and C 1s (d) spectra of the CNF-MXene nanocomposites

    图  3  PVA、CNF-MXene/PVA、CNF-MXene/PVA-KOH水凝胶的拉伸应力-应变曲线(a)、杨氏模量和拉伸强度(b)、压缩应力-应变曲线(c) 与韧性(d)

    Figure  3.  Tensile stress-strain curves (a), Young's modulus and tensile strength (b), compressive stress-strain curves (c), and toughness (d) of the PVA, CNF-MXene/PVA, and CNF-MXene/PVA-KOH hydrogels

    图  4  PVA、CNF-MXene/PVA 与CNF-MXene/PVA-KOH水凝胶的电导率

    Figure  4.  Conductivities of the PVA, CNF-MXene/PVA, and CNF-MXene/PVA-KOH hydrogels

    图  5  PVA、CNF-MXene/PVA与CNF-MXene/PVA-KOH水凝胶的保水率

    Figure  5.  Water retention of the PVA, CNF-MXene/PVA, and CNF-MXene/PVA-KOH hydrogels

    图  6  (a) CNF-MXene/PVA与CNF-MXene/PVA-KOH水凝胶在室温和冷冻后的对比图片;(b) PVA、CNF-MXene/PVA与CNF-MXene/PVA-KOH水凝胶的DSC图

    Figure  6.  (a) Comparison photos of the CNF-MXene/PVA and CNF-MXene/PVA-KOH hydrogels at room temperature and after freezing; (b) DSC spectra of the PVA, CNF-MXene/PVA, and CNF-MXene/PVA-KOH hydrogels

    图  7  (a) CNF-MXene/PVA-KOH水凝胶基传感器对反复慢速与快速拉伸的响应性;(b)水凝胶传感器对反复20%与40%拉伸应变的响应性

    Figure  7.  (a) Response of the hydrogel-based sensor to repeated slow and fast stretching, respectively; (b) Response of the hydrogel-based sensor to loading of 20% and 40% strain, respectively.

    图  8  (a)CNF-MXene/PVA-KOH水凝胶基传感器对外界质量的响应时间与检测极限,(b)水凝胶传感器对不同质量压力的响应性,(c)水凝胶传感器对手腕脉搏跳动的响应性, (d)水凝胶传感器对说“FAFU”引起的喉咙震动的响应性

    Figure  8.  (a) The measurement results of the response time and detection limit of the CNF-MXene/PVA-KOH hydrogel-based sensor. (b) Response of the hydrogel-based sensor to different weights on its surface. (c) Response of the hydrogel-based sensor to the wrist pulse beating. (d) Response of the hydrogel-based sensor to the throat vibration induced by speaking “FAFU”

  • [1] YING B, WU Q, LI J, et al. An ambient-stable and stretchable ionic skin with multimodal sensation[J]. Materials Horizons,2020,7(2):477-88. doi: 10.1039/C9MH00715F
    [2] YANG T, WANG W, ZHANG H, et al. Tactile Sensing System Based on Arrays of Graphene Woven Microfabrics: Electromechanical Behavior and Electronic Skin Application[J]. ACS nano,2015,9(11):10867-75. doi: 10.1021/acsnano.5b03851
    [3] LIU X, TANG C, DU X, et al. A highly sensitive graphene woven fabric strain sensor for wearable wireless musical instruments[J]. Materials Horizons,2017,4(3):477-86. doi: 10.1039/C7MH00104E
    [4] YANG J, CHEN J, SU Y, et al. Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition[J]. Advanced Materials,2015,27(8):1316-26. doi: 10.1002/adma.201404794
    [5] ZHANG M, WANG C, WANG H, et al. Carbonized Cotton Fabric for High-Performance Wearable Strain Sensors[J]. Advanced Functional Materials,2017,27(2):1604795. doi: 10.1002/adfm.201604795
    [6] WANG C, LI X, GAO E, et al. Carbonized Silk Fabric for Ultrastretchable, Highly Sensitive, and Wearable Strain Sensors[J]. Advanced Materials,2016,28(31):6640-8. doi: 10.1002/adma.201601572
    [7] AHMED E M. Hydrogel: Preparation, characterization, and applications: A review[J]. Journal of Advanced Research,2015,6(2):105-21. doi: 10.1016/j.jare.2013.07.006
    [8] FU G, CHEN Y, CUI Z, et al. Novel Hydrogel-Derived Bifunctional Oxygen Electrocatalyst for Rechargeable Air Cathodes[J]. Nano Letters,2016,16(10):6516-22. doi: 10.1021/acs.nanolett.6b03133
    [9] 孙富昌, 潘雨辰, 张云飞, 等. PEDOT: PSS/聚 (丙烯酰胺-甲基丙烯酸) 导电水凝胶的制备与性能[J]. 复合材料学报, 2022, 39(3):1114-23.

    SUN Fuchang, Pan Yuchen, Zhang Yunfei, et al. Preparation and properties of PSS/ poly (acrylamide-methacrylic acid) conductive hydrogel[J]. Journal of Composite Materials,2022,39(3):1114-23(in Chinese).
    [10] 周益名. 纳米纤维素复合凝胶的制备和表征及其物化性能增强的研究 [D]. 广州: 华南理工大学, 2014.

    ZHOU Yiming. Preparation, characterization and enhancement of physicochemical properties of nanocellulosic composite gel [D]. Guangzhou: South China University of Technology, 2014(in Chinese).
    [11] ZHOU Y, WAN C, YANG Y, et al. Highly Stretchable, Elastic, and Ionic Conductive Hydrogel for Artificial Soft Electronics[J]. Advanced Functional Materials,2019,29(1):1806220. doi: 10.1002/adfm.201806220
    [12] 薛雅楠, 韩政学, 李爽然, 等. 纳米材料掺杂型聚乙烯醇双交联复合水凝胶的力-化学性质[J]. 材料导报, 2019, 33(10):1745-51. doi: 10.11896/cldb.18010247

    XUE Yanan, Han Zhengxue, Li Shuangran, et al. Mechanical and chemical properties of nanomaterial doped polyvinyl alcohol double crosslinked composite hydrogel[J]. Materials Review,2019,33(10):1745-51(in Chinese). doi: 10.11896/cldb.18010247
    [13] 徐朝阳, 李健昱, 江向东, 等. MWCNTs增强聚乙二醇-聚乙烯醇复合水凝胶的制备及性能[J]. 复合材料学报, 2017, 34(06):1191-8.

    XU Zhaoyang, Li Jianyu, Jiang Xiangdong, et al. Preparation and properties of polyethylene-polyvinyl alcohol composite hydrogel reinforced by MWCNTs[J]. Journal of Composites,2017,34(06):1191-8(in Chinese).
    [14] SHEN R, XUE S, XU Y, et al. Research Progress and Development Demand of Nanocellulose Reinforced Polymer Composites [J]. Polymers (Basel), 2020, 12(9):
    [15] HUANG S, ZHAO Z, FENG C, et al. Nanocellulose reinforced P (AAm-co-AAc) hydrogels with improved mechanical properties and biocompatibility[J]. Composites Part A:Applied Science and Manufacturing,2018:112(395-404.
    [16] HU K, HE P, ZHAO Z, et al. Nature-inspired self-powered cellulose nanofibrils hydrogels with high sensitivity and mechanical adaptability[J]. Carbohydr Polym,2021:264(117995.
    [17] XIE Y, ZHENG Y, FAN J, et al. Novel Electronic-Ionic Hybrid Conductive Composites for Multifunctional Flexible Bioelectrode Based on in Situ Synthesis of Poly(dopamine) on Bacterial Cellulose[J]. ACS Appl Mater Interfaces,2018,10(26):22692-702. doi: 10.1021/acsami.8b05345
    [18] 葛文娇. 纳米纤维素增强导电复合水凝胶的构建与性能调控 [D]. 广州: 华南理工大学, 2019.

    GE Wenjiao. Construction and property regulation of conductive composite hydrogels enhanced by nanocellulose [D]. Guangzhou: South China University of Technology, 2019(in Chinese).
    [19] YUE L, XIE Y, ZHENG Y, et al. Sulfonated bacterial cellulose/polyaniline composite membrane for use as gel polymer electrolyte[J]. Composites Science and Technology,2017:145(122-31.
    [20] 韩景泉, 王慧祥, 岳一莹, 等. 纤维素纳米纤丝-碳纳米管/聚乙烯醇-硼酸盐复合导电水凝胶[J]. 复合材料学报, 2017, 34(10):2312-20.

    HAN Jingquan, Wang Huixiang, Yue Yiying, et al. Cellulose nanofiber-carbonbnanotubes/Polyvinyl alcohol-borate composite conductive hydrogel[J]. Journal of Composites,2017,34(10):2312-20(in Chinese).
    [21] HE P, GUO R, HU K, et al. Tough and super-stretchable conductive double network hydrogels with multiple sensations and moisture-electric generation[J]. Chem Eng J,2021:414(.
    [22] 韩景泉, 丁琴琴, 鲍雅倩, 等. 纤维素纳米纤丝增强导电水凝胶的合成与表征[J]. 林业工程学报, 2017, 2(01):84-9.

    HAN Jingquan, Ding Qinqin, Bao Yaqian, et al. Synthesis and characterization of cellulose nanofiber reinforced conductive hydrogel[J]. Transactions of the Chinese Society of Forestry Engineering,2017,2(01):84-9(in Chinese).
    [23] 王操宇. 过渡金属碳/氮化物(MXene)复合材料在柔性金属锂电池中的应用 [D]. 武汉: 华中农业大学, 2020.

    WANG Caoyu. Application of transition metal carbon/nitride (MXene) composites in flexible metal lithium battery [D]. Wuhan: Huazhong Agricultural University, 2020(in Chinses).
    [24] 王昕. MXene基超级电容器电极材料的制备与电化学性能研究 [D]. 合肥: 中国科学技术大学, 2020.

    WANG Xin. Preparation and electrochemical properties of MXene based supercapacitor electrode materials [D]. Hefei: University of Science and Technology of China, 2020(in Chinese).
    [25] ZHOU B, ZHANG Z, LI Y, et al. Flexible, Robust, and Multifunctional Electromagnetic Interference Shielding Film with Alternating Cellulose Nanofiber and MXene Layers[J]. ACS Appl Mater Interfaces,2020,12(4):4895-905. doi: 10.1021/acsami.9b19768
    [26] XIN W, XI G-Q, CAO W-T, et al. Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding[J]. Rsc Adv,2019,9(51):29636-44. doi: 10.1039/C9RA06399D
    [27] 卢麒麟. 基于纳米纤维素的超分子复合材料与杂化材料的研究 [D]. 福州: 福建农林大学, 2016.

    LU Qilin. Study on supramolecular composites and hybrid materials based on nanocelluloses [D]. Fuzhou: Fujian Agriculture and Forestry University, 2016(in Chinese).
    [28] HUANG S, HOU L, LI T, et al. Antifreezing Hydrogel Electrolyte with Ternary Hydrogen Bonding for High-Performance Zinc-Ion Batteries[J]. Advanced Materials,2022:2110140. doi: 10.1002/adma.202110140
    [29] YANG Y, YANG Y, CAO Y, et al. Anti-freezing, resilient and tough hydrogels for sensitive and large-range strain and pressure sensors[J]. Chem Eng J,2021,403:126431.
  • 加载中
计量
  • 文章访问数:  161
  • HTML全文浏览量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-21
  • 录用日期:  2022-03-09
  • 修回日期:  2022-03-02
  • 网络出版日期:  2022-03-30

目录

    /

    返回文章
    返回